Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu C
tách:
SSH:(20-2):1+1=19
Tổng:(20+2).19:2=209
C=4209
Câu:B
Tách:
SSH:(202-1):1+1=202
Tổng:(202+1).202:2=20503
B=320503
a)Ta có \(2A=2^2+2^3+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
Vậy \(A=2^{101}-2\)
b)
Ta có \(3A=3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow A=\frac{3^{101}-3}{2}\)
Vậy \(A=\frac{3^{101}-3}{2}\)
1.A=2^2+2^4+...+2^2010
=> 2^2 A= 2^4+2^6+..+2^2012
=> 2^2 A - A=( 2^4+2^6+..+2^2012 ) -(2^2+2^4+...+2^2010 )
=> 3A= 2^2012 -2^2
=> A= (2^2012-2^2)/3
B=3-3^2+3^3-...-3^2010
=>3B= 3^2 -3^3+3^4-...-3^2011
=> 3B + B = (3^2 -3^3+3^4-...-3^2011) +(3-3^2+3^3-...-3^2010)
=> 4B =3-3^2011
=> B= (3-3^2011)/4
2.
A=3+3^2+..+3^100
=> 3A =3^2+3^3+...+3^101
=> 3A- A = (3^2+3^3+...+3^101)-(3+3^2+..+3^100)
=> 2A=3^101 -3
=> 2A+3 =3^101 mà 2A+3 =3^n
=> n=101
\(1,S=3+3^2+3^3+...+3^{20}\)(1)
\(\Rightarrow3S=3^2+3^3+3^4+...+3^{21}\)(2)
Lấy (2) -(1) ta có :
\(\Rightarrow2S=3^{21}-3\)
\(\Rightarrow S=\frac{3^{21}-3}{2}\)
\(3,A=1.2.3+2.3.4+3.4.5+...+\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow4A=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+\left(n-1\right)n\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right)n\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow4A=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Chơi câu khó nhất
D = 4 + 42 + 43 + ... + 4n
4D = 42 + 43 + ... + 4n+1
3D = 4n+1 - 4
D = \(\frac{4^{n+1}-4}{3}\)
Mình chỉ ghj đáp za thôj nên thông cảm nha
b)1953368
c)225
d)32
\(a,=4^{10}.4^{10}.4^{45}\)
\(=4^{65}\)
\(b,=5^9+3^5\)
\(=1953125+243\)
\(=1953368\)
\(c,=1+8+27+64+125\)
\(=225\)
\(d,=32^5:32^4\)
\(=32\)
Phần a sai đề nha
b) S = 3 + 32 + 33 + 34 + ............ + 320
S = ( 3 + 32 ) + ( 33 + 34 ) + ........... + ( 319 + 320 )
S = 3 . ( 1 + 3 ) + 33 . ( 1 + 3 ) + ....... + 319 . ( 1 + 3 )
S = 3 . 4 + 33 . 4 + ............. + 319 . 4
S = 12 + 27 . 4 + ........... + 319 . 4
S = 12 + 108 + ........... + 319 . 4
Mà 12 ; 108 \(⋮\) 12 \(\Rightarrow\) ( 12 + 108 + ............ + 319 . 4 ) \(⋮\) 12
Vậy S \(⋮\) 12 ( ĐPCM )
b/S=3+3^2+3^3+3^4+......+3^20(gồm 21 số hạng)
S=(3+3^2)+(3^3+3^4)+(3^5+3^6)+......+(3^19+3^20)
S=1(3+3^2)+3^2(3+3^2)+......+3^18(3+3^2)
S=1.12 +3^2.12 +........+3^18.12
S=12.(1+3^2+3^4+......+3^18)
Vậy S chia hết cho 12
\(A=3+3^2+3^3+3^4+...+3^{20}\)
\(3A=3^2+3^3+3^4+3^5+...+3^{21}\)
\(3A-A=3^{21}-3\)
(Bạn komhieeur chỗ nào thì cứ hỏi mink nhé)