Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2941}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{1943}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2941}}{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{1943}}\)
\(=\dfrac{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2941}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{1943}}.\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{1943}}{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2941}}\)
\(=\dfrac{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2941}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{1943}\right)}.\dfrac{2\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{1943}\right)}{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2941}\right)}\)
\(=\dfrac{5}{3}.\dfrac{2}{4}=\dfrac{10}{12}=\dfrac{5}{6}\)
Vì đề bài không yêu cầu tính nên bn có thể không tính ra như mk cux đc!
đây là tính nhanh à nếu tính bình thường thì tính may tính là ra
a) 17/23 . 8/16 . 23/17. (-80) . 3/4
= (17/23 . 23/17) . (8/16 . 3/4) . (-80)
= 1 . 3/8 . (-80)
= 3/8 . (-80)
= -30
b) 5/11 . 18/29 - 5/11 . 8/29 + 5/11 . 19/29
= 5/11 . (18/29 - 8/29 + 19/29)
= 5/11 . 1
= 5/11
c)(13/23 + 1313/2323 - 131313/232323).(1/3+1/4 -7/12)
= (13/23 + 1313/2323 - 131313/232323).0
= 0
d) 12/2x2 . 22/2x3 . 32/3x4 . 42/4x5 . 52/5x6 . 62/6x7 . 72/7x8 . 82/8x9 . 92/9x10
= 1/2 . 2/3 . 3/4 . 4/5 . 5/6 . 6/7 . 7/8 . 8/9 .9/10
= 1/10
Khó nhìn quá. Bạn thông cảm nhé!
Ta có:B=1\(\dfrac{6}{41}\)( \(\dfrac{12+\dfrac{12}{19}-\dfrac{12}{37}-\dfrac{12}{53}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2006}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2006}}\) )
B=\(\dfrac{47}{41}\) [\(\dfrac{12\left(1+\dfrac{1}{19}-\dfrac{1}{37}-\dfrac{1}{53}\right)}{3\left(1+\dfrac{1}{3}-\dfrac{1}{37}-\dfrac{1}{53}\right)}:\dfrac{4\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2006}\right)}{5\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2006}\right)}\) B = \(\dfrac{47}{41}\) [ \(\dfrac{12}{3}:\dfrac{4}{5}\)]
B = \(\dfrac{47}{41}\)[ 4 . \(\dfrac{5}{4}\)]
B = \(\dfrac{47}{41}.5\)
B = \(\dfrac{235}{41}\)
Chúc bn hc tốt!!!
mk có thắc mắc là bạn để 3 ra ngoài sao 1/3 vẫn giữ nguyên vậy phải bằng 1/9 mới đúng chứ'
3)\(\dfrac{-41}{32}\left(\dfrac{15}{8}-\dfrac{16}{41}\right)+\dfrac{15}{8}\left(\dfrac{41}{32}-\dfrac{8}{3}\right)\)
=\(\dfrac{-41}{32}.\dfrac{15}{8}-\dfrac{-41}{32}.\dfrac{16}{41}+\dfrac{15}{8}.\dfrac{41}{32}-\dfrac{15}{8}.\dfrac{8}{3}\)
=\(\left(\dfrac{-41}{32}.\dfrac{15}{8}+\dfrac{15}{8}.\dfrac{41}{32}\right)+\dfrac{-16}{41}.\dfrac{-41}{32}-\dfrac{15}{8}.\dfrac{8}{3}\)
=\(0+\dfrac{1}{2}-5=\dfrac{-9}{2}\)
4)\(\dfrac{13}{29}\left(\dfrac{29}{5}-\dfrac{45}{8}\right)-\dfrac{45}{8}\left(\dfrac{9}{8}-\dfrac{13}{29}\right)\)
=\(\dfrac{13}{29}.\dfrac{29}{5}-\dfrac{45}{8}.\dfrac{13}{29}-\dfrac{45}{8}.\dfrac{9}{8}-\dfrac{45}{8}.\dfrac{13}{29}\)
=\(\left(\dfrac{45}{8}.\dfrac{13}{29}-\dfrac{45}{8}.\dfrac{13}{29}\right)-\dfrac{13}{29}.\dfrac{29}{5}-\dfrac{45}{8}.\dfrac{9}{8}\)
=\(0-\dfrac{13}{5}-\dfrac{405}{64}=\dfrac{-2857}{320}\)
Dạng bài tương tự như bài này, bạn áp dụng cách làm vào làm bài của bạn nhé: Câu hỏi của Dao Dao - Toán lớp 7 | Học trực tuyến
\(A=\dfrac{\dfrac{2017}{2}+\dfrac{2017}{3}+\dfrac{2017}{4}+...+\dfrac{2017}{2018}}{\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}}\)
Đặt \(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}\) là B
\(B=\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{1}{2017}\\ =\dfrac{2017}{1}+1+\dfrac{2016}{2}+1+...+\dfrac{1}{2017}+1-2017\\ =\dfrac{2018}{1}+\dfrac{2018}{2}+...+\dfrac{2018}{2017}-2017\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\left(2018-2017\right)\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+1\\ =\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\\ =2018.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)
\(A=\dfrac{\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2018}}{2018\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}\\ =\dfrac{2017.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}{2018.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)}\\ =\dfrac{2017}{2018}\)
a)
\(3\dfrac{14}{19}+\dfrac{13}{17}+\dfrac{35}{43}+6\dfrac{5}{19}+\dfrac{8}{43}\\ =\left(3\dfrac{14}{19}+6\dfrac{5}{19}\right)+\left(\dfrac{35}{43}+\dfrac{8}{43}\right)+\dfrac{13}{17}\\ =10+1+\dfrac{13}{17}\\ =11\dfrac{13}{17}\)
b)
\(\dfrac{-5}{7}\cdot\dfrac{2}{11}+\dfrac{-5}{7}\cdot\dfrac{9}{11}+1\dfrac{5}{7}\\ =\dfrac{-5}{7}\cdot\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1\dfrac{5}{7}\\ =\dfrac{-5}{7}\cdot1+1\dfrac{5}{7}\\ =\dfrac{-5}{7}+1\dfrac{5}{7}\\ =1\)
a) \(3\dfrac{14}{19}+\dfrac{13}{17}+\dfrac{35}{43}+6\dfrac{5}{19}+\dfrac{8}{43}\)
\(=\left(3\dfrac{14}{19}+6\dfrac{5}{19}\right)+\left(\dfrac{35}{43}+\dfrac{8}{43}\right)+\dfrac{13}{17}\)
\(=\left[\left(3+6\right)+\left(\dfrac{14}{19}+\dfrac{5}{19}\right)\right]+1+\dfrac{13}{17}\)
\(=\left[9+1\right]+1+\dfrac{13}{17}\)
\(=10+1+\dfrac{13}{17}\)
\(=11+\dfrac{13}{17}\)
\(=\dfrac{187}{17}+\dfrac{13}{17}\)
\(=\dfrac{200}{17}\)
b) \(\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}.\dfrac{9}{11}+1\dfrac{5}{7}\)
\(=\dfrac{-5}{7}.\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{12}{7}\)
\(=\dfrac{-5}{7}.1+\dfrac{12}{7}\)
\(=\dfrac{-5}{7}+\dfrac{12}{7}\)
\(=\dfrac{7}{7}\)
\(=1\)
c) \(11\dfrac{3}{13}-\left(2\dfrac{4}{7}+5\dfrac{3}{13}\right)\)
= \(11\dfrac{3}{13}-2\dfrac{4}{7}-5\dfrac{3}{13}\)
\(=\left(11\dfrac{3}{13}-5\dfrac{3}{13}\right)-2\dfrac{4}{7}\)
\(=\left[\left(11-5\right)+\left(\dfrac{3}{13}-\dfrac{3}{13}\right)\right]-\dfrac{18}{7}\)
\(=\left[6+0\right]-\dfrac{18}{7}\)
\(=6-\dfrac{18}{7}\)
\(=\dfrac{42}{7}-\dfrac{18}{7}\)
\(=\dfrac{24}{7}\)
d) \(\dfrac{2}{7}.5\dfrac{1}{4}-\dfrac{2}{7}.3\dfrac{1}{4}\)
\(=\dfrac{2}{7}.\left(5\dfrac{1}{4}-3\dfrac{1}{4}\right)\)
\(=\dfrac{2}{7}.\left[\left(5-3\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)\right]\)
\(=\dfrac{2}{7}.\left[2+0\right]\)
\(=\dfrac{2}{7}.2\)
= \(\dfrac{4}{7}\)
\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)
\(B=\dfrac{2\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)
\(B=\dfrac{2}{3}:\dfrac{4}{5}\) ( Do \(\left\{{}\begin{matrix}1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\ne0\\1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\ne0\end{matrix}\right.\))
\(B=\dfrac{2}{3}\cdot\dfrac{5}{4}=\dfrac{2\cdot5}{3\cdot4}=\dfrac{5}{6}\)
\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)
\(\Rightarrow\)\(B=\dfrac{2-\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)
\(\Rightarrow B=\dfrac{2}{3}:\dfrac{4}{5}=\dfrac{10}{12}=\dfrac{5}{6}\)