Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để đường thẳng (d) vuông góc với đường thẳng thì 2(3m + 2) = -1 hay:
Chọn B.
Xét ptr hoành độ của `(d)` và `(P)` có:
`(m-1)x^2+2mx+3m-1=2x+m`
`<=>(m-1)x^2+2(m-1)x+2m-1=0` `(1)`
`(d)` tiếp xúc `(P)<=>` Ptr `(1)` có nghiệm kép
`<=>{(a \ne 0),(\Delta'=0):}`
`<=>{(m-1 \ne 0),((m-1)^2-(m-1)(2m-1)=0):}`
`<=>{(m \ne 1),(-m(m-1)=0):}`
`<=>m=0`
`->B`
Phương trình hoành độ giao điểm : \(m-1x2+2mx+3m-1=2x+m\)
\(\Leftrightarrow m-1x2+2m-1x+2m-1=0\)
Để d tiếp xúc với P khi và chỉ khi phương trình có nghiệm kép
\(\Leftrightarrow m-1\ne0\Delta'=m-15-m-12m-1=-mm-1=0\) \(\Leftrightarrow m\ne1m=0m=1\Leftrightarrow m=0\)
\(\Rightarrow\) chọn \(B\)
Xét pt hoành độ gđ của (P) và (d) có:
\(x^2-4mx+3m^2+1=2x+3m-2\)
\(\Leftrightarrow x^2-2x\left(2m+1\right)+3m^2-3m+3=0\) (1)
Để (P) và (d) cắt nhau tại hai điểm M;N khi pt (1) có hai nghiệm pb
\(\Leftrightarrow\Delta>0\Leftrightarrow m^2+7m-2>0\Leftrightarrow\left[{}\begin{matrix}m>\dfrac{-7+\sqrt{57}}{2}\\m< \dfrac{-7-\sqrt{57}}{2}\end{matrix}\right.\)
Gọi \(M\left(x_1;2x_1+3m-2\right);N\left(x_2;2x_2+3m-2\right)\) là hai giao điểm của (P) và (d)
\(\Rightarrow\overrightarrow{AM}\left(x_1;2x_1-2\right);\overrightarrow{AN}\left(x_2;2x_2-2\right)\)
(CT tính nhanh diện tích) \(S_{AMN}=\dfrac{1}{2}\left|x_1\left(2x_2-2\right)-x_2\left(2x_1-2\right)\right|\)\(=\dfrac{1}{2}\left|-2x_1+2x_2\right|=\left|x_2-x_1\right|=4\)
\(\Rightarrow\left(x_2-x_1\right)^2=16\)
\(\Leftrightarrow\left(x_2+x_1\right)^2-4x_1x_2=16\)\(\Leftrightarrow\left(4m+2\right)^2-4\left(3m^2-3m+3\right)=16\)
\(\Leftrightarrow4m^2+28m-24=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{-7+\sqrt{73}}{2}\\m=\dfrac{-7-\sqrt{73}}{2}\end{matrix}\right.\)(tm)
Vậy...
Phương trình hoành độ giao điểm:
\(3x^2-x-5=mx-1\Rightarrow3x^2-\left(m+1\right)x-4=0\)
\(ac=-12< 0\Rightarrow\) phương trình luôn có 2 nghiệm hay (d) luôn cắt (P) tại 2 điểm phân biệt
Theo định lý Viet: \(x_A+x_B=\frac{m+1}{3}\)
\(\Rightarrow y_A+y_B=mx_A-1+mx_B-1=m\left(x_A+x_B\right)-2=\frac{m^2+m-6}{3}\)
Mà tọa độ trung điểm I của AB có dạng: \(\left\{{}\begin{matrix}x_I=\frac{x_A+x_B}{2}=\frac{m+1}{6}\\y_I=\frac{y_A+y_B}{2}=\frac{m^2+m-6}{6}\end{matrix}\right.\)
\(\Rightarrow\frac{m^2+m-6}{6}=\frac{m+1}{6}-1\)
\(\Rightarrow m^2=1\Rightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
Xét hệ phương trình m − 2 x + m − 6 y = − m + 1 m − 4 x + 2 m − 3 y = m − 5 có định thức cấp hai là
D = m − 2 m − 6 m − 4 2 m − 3 = m − 2 . 2 m − 3 − m − 4 . m − 6
= m 2 + 3 m − 18 = m − 3 m + 6
Để hai đường thẳng cắt nhau thì hệ phương trình có nghiệm duy nhất
⟺ D ≠ 0 ⟺ m ≠ 3 m ≠ − 6
ĐÁP ÁN C
Đáp án B