Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}\\ =\dfrac{-5x-10}{8-4x}.\dfrac{4-2x}{x+2}\\ =\dfrac{-5\left(x+2\right)}{4\left(2-x\right)}.\dfrac{2\left(2-x\right)}{x+2}=\dfrac{-5}{2}\)
b)\(\dfrac{x^2-36}{2x+10}.\dfrac{3}{6-x}\\ =\dfrac{\left(x-6\right).\left(x+6\right)}{2\left(x+5\right)}.\dfrac{-3}{x-6}\\ =\dfrac{-3x-18}{2x+10}\)
\(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)( ĐKXĐ : \(x\ne\pm2\))
\(=\frac{5\left(x+2\right)}{2\left(2x-4\right)}\cdot\frac{-\left(2x-4\right)}{x+2}\)
\(=\frac{-5\left(x+2\right)\left(2x-4\right)}{2\left(2x-4\right)\left(x+2\right)}\)
\(=-\frac{5}{2}\)
\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}\)( ĐKXĐ : \(x\ne-5;x\ne6\))
\(=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\frac{3}{-\left(x-6\right)}\)
\(=\frac{3\left(x-6\right)\left(x+6\right)}{-2\left(x+5\right)\left(x-6\right)}\)
\(=\frac{3\left(x+6\right)}{-2\left(x+5\right)}=\frac{3x+18}{-2x-10}=-\frac{3x+18}{2x+10}\)
a)
Điều kiện : \(\hept{\begin{cases}4x-8\ne0\\x+2\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
\(=\frac{5\left(x+2\right)}{-2\left(4-2x\right)}\cdot\frac{4-2x}{x+2}\)
\(=\frac{-5}{2}\)
b)
Điều kiện : \(\hept{\begin{cases}2x+10\ne0\\6-x\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ne-5\\x\ne6\end{cases}}\)
\(=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}\)
\(=\frac{-6\left(x+6\right)\cdot3}{2x+10}\)
\(=\frac{-9\left(x+6\right)}{x+5}\)
\(=\frac{-9x-54}{x+5}\)
\(=\frac{-9\left(x+5\right)-9}{x+5}\)
\(=-9-\frac{9}{x+5}\)
\(\frac{x^2+3x+9}{2x+10}.\frac{x+5}{x^3-27}\)
\(=\frac{x^2+3x+9}{2\left(x+5\right)}.\frac{x+5}{\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{\left(x+5\right)\left(x^2+3x+9\right)}{2\left(x+5\right)\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{1}{2\left(x-3\right)}\)
\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\left(\frac{x^2-36}{x^2+1}\right)\)
\(=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\left[\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\right]\)
\(=\frac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12x^2+12}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12\left(x^2+1\right).\left(x-6\right)\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(x^2+1\right)}\)
\(=\frac{12}{x}\)
bạn ơi tại sao lại bằng 2x +6, bạn có thể giải đáp cho mình đc ko
a: \(=\dfrac{x^3-1}{x+2}\cdot\dfrac{x^2+x+1-x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x+2}{x+2}=1\)
b: \(=\dfrac{\left(x+2\right)\left(x-1\right)\left(x+1\right)}{2\left(x+5\right)}\cdot\left(\dfrac{x+1-2x+2}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x+2}\right)\)
\(=\dfrac{\left(x+2\right)\left(x-1\right)\left(x+1\right)}{2\left(x+5\right)}\cdot\left(\dfrac{-\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x+2}\right)\)
\(=\dfrac{\left(x+2\right)\left(x-1\right)\left(x+1\right)}{2\left(x+5\right)}\cdot\dfrac{-\left(x^2-x-6\right)+x^2-1}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{-x^2+x+6+x^2-1}{2\left(x+5\right)}=\dfrac{x+5}{2\left(x+5\right)}=\dfrac{1}{2}\)