Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gia tốc tỉ lệ với li độ, nên li độ tại B gấp đôi li độ tại A.
Giả sử li độ của A là x, thì của B là -2x (ngược dấu)
Li độ của M là: x - (x+2x) . 2 /3 = -x
Do vậy, gia tốc tại M là 3cm/s2
P/S: Đáp án chẳng liên quan gì nhỉ :)
rad/s là đơn vị của tần số góc ω chứ.
\(F_{đh}=-k.x\Rightarrow x=\dfrac{F}{k}\)
Bảo toàn cơ năng ta có:
\(\dfrac{1}{2}mv_1^2+\dfrac{1}{2}k.x_1^2=\dfrac{1}{2}mv_2^2\) (lúc sau, lực đàn hồi = 0 thì x = 0 -> thế năng bằng 0)
\(\Rightarrow mv_1^2+k.(\dfrac{F_1}{k})^2=mv_2^2\)
Chọn C nhé bạn
\(\Rightarrow v_2^2 = v_1^2+\dfrac{F_1^2}{k.m}\)
Dựa vào phương trình sóng => \(\lambda = 2 \pi (m), f = 50Hz\)
Tốc độ truyền sóng là \(v = \lambda.f=2\pi50= 100\pi (m/s)\)
Tốc độ cực đại của phần tử vật chất môi trường là \(v_{max}= A.w=3.100\pi (m/s)\)
\(\Rightarrow \frac{v}{v_{max}} = \frac{100\pi}{3.100\pi}=\frac{1}{3} \)
a 30
\(\omega =4\pi(rad/s)\)
\(|a|\le160\sqrt 3\) ứng với phần gạch đỏ trên hình, thời gian 1/3T ứng với véc tơ quay 1 góc 1200,.
Do vậy, mỗi một góc nhỏ là 300
\(\Rightarrow a_{max}=\dfrac{a}{\sin 30^0}=2a=320\sqrt 3(cm/s) \)
\(\Rightarrow A = \dfrac{a_{max}}{\omega^2}=2\sqrt 3(cm)\)
Cơ năng: \(W=\dfrac{1}{2}kA^2\Rightarrow k=\dfrac{2W}{A^2}=\dfrac{0,004}{(0,02\sqrt 3)^2}=...\)
\(\lambda = v.T = \frac{v}{f}=\frac{50}{10}=5cm.\)
Tại M: \(d_{2M}-d_{1M}=18-3=15=3.5\) => M dao động mạnh nhất.
Tại N: \(d_{2N}-d_{1N}=45-10=35=7.5\) => N dao động mạnh nhất.