Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-2x\sqrt{x^2+x+1}=2x^2-x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{x^2+x+1}+x^2+x+1\right)-4x^2=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2+x+1}\right)^2-\left(2x\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2+x+1}+2x\right)\left(x-\sqrt{x^2+x+1}-2x\right)=0\)
\(\Leftrightarrow\left(3x-\sqrt{x^2+x+1}\right)\left(-x-\sqrt{x^2+x+1}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}3x-\sqrt{x^2+x+1}=0\\-x-\sqrt{x^2+x+1}=0\end{array}\right.\)
+) \(3x-\sqrt{x^2+x+1}=0\)
\(\Leftrightarrow3x=\sqrt{x^2+x+1}\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow9x^2=x^2+x+1\)
\(\Leftrightarrow8x^2-x-1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1+\sqrt{33}}{16}\left(tm\right)\\x=\frac{1-\sqrt{33}}{16}\left(ktm\right)\end{array}\right.\)
+) \(-x-\sqrt{x^2+x+1}=0\)
\(\Leftrightarrow-x=\sqrt{x^2+x+1}\left(ĐK:x\le0\right)\)
\(\Leftrightarrow x^2=x^2+x+1\)
\(\Leftrightarrow x=-1\left(tm\right)\)
Vậy pt đã cho có taapk nghiệm là \(S=\left\{\frac{1+\sqrt{33}}{16};-1\right\}\)
Biến đổi phương trình tương đương: \(2x\sqrt{x^2+x+1}=-2x^2+x+1\)
\(\Leftrightarrow\begin{cases}x\left(-2x^2+x+1\right)\ge0\\4x^2\left(x^2+x+1\right)=\left(-2x^2+x+1\right)^2\end{cases}\Leftrightarrow\begin{cases}x\left(2x^2-x-1\right)\le0\\8x^3+7x^2-2x-1=0\end{cases}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(x-1\right)\left(2x+1\right)\le0\\\left(x+1\right)\left(8x^2-x-1\right)=0\end{array}\right.\Leftrightarrow\hept{\begin{cases}x\in\left(-\infty;-\frac{1}{2}\right)\\\left[\begin{array}{nghiempt}x=-1\\\frac{1\pm\sqrt{33}}{16}\end{array}\right.\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\\frac{1\pm\sqrt{33}}{16}\end{array}\right.\)
Vậy, phương trình có nghiệm \(x=-1\) hoặc \(x=\frac{1\pm\sqrt{33}}{16}\)
cần gấp thì mình làm cho
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)
\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(< =>x+1=\sqrt{x+1}\)
\(< =>\frac{x+1}{\sqrt{x+1}}=1\)
\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)
ĐKXĐ : \(x\ge-1\)
Bình phương 2 vế , ta có :
\(x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+2x+1-x-1=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\
Vậy ...............................
6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)
\(\Rightarrow b^4+a^4=2\)
Từ đó ta có: a + b = 2
Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)
Dấu = xảy ra khi a = b = 1
=> x = 1
\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}=1\)
Mà \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}\ge1\)
nên dấu "=" <=> x = -1
\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)
<=> \(\sqrt{x^2+2x+1}=1-\sqrt{x^4-2x^2+2}\)
<=> \(\left(\sqrt{x^2+2x+1}\right)^2=\left(1-\sqrt{x^4-2x^2+2}\right)^2\)
<=> x2 + 2x + 1 = x4 - 2x2 + 3 - 2\(\sqrt{x^4-2x^2+2}\)
<=> x2 + 2x + 1 - (x4 - 2x) = -2\(\sqrt{x^4-2x^2+2}\) - (x4 - 2x)
<=> -x4 + 3x2 + 1 = -2\(\sqrt{x^4-2x^2+2}+3\)
<=> -x4 + 3x2 + 1 - 3 = -2\(\sqrt{x^4-2x^2+2}\)
<=> (-x4 + 3x2 - 2)2 = (-2\(\sqrt{x^4-2x^2+2}\))2
<=> x8 - 6x6 - 4x5 + 13x4 + 12x3 - 8x2 - 8x + 4 = 4x4 - 8x2 + 8
<=> x = -1
=> x = -1