\(\text{ Giải phương trình }\)

\(\sqrt{x^2+2x+1}+\sqrt{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}=1\)

Mà \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}\ge1\)

nên dấu "=" <=> x = -1

16 tháng 7 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)

<=> \(\sqrt{x^2+2x+1}=1-\sqrt{x^4-2x^2+2}\)

<=> \(\left(\sqrt{x^2+2x+1}\right)^2=\left(1-\sqrt{x^4-2x^2+2}\right)^2\)

<=> x2 + 2x + 1 = x4 - 2x2 + 3 - 2\(\sqrt{x^4-2x^2+2}\)

<=> x2 + 2x + 1 - (x4 - 2x) = -2\(\sqrt{x^4-2x^2+2}\) - (x4 - 2x)

<=> -x4 + 3x2 + 1 = -2\(\sqrt{x^4-2x^2+2}+3\)

<=> -x4 + 3x+ 1 - 3 = -2\(\sqrt{x^4-2x^2+2}\)

<=> (-x4 + 3x2 - 2)2 = (-2\(\sqrt{x^4-2x^2+2}\))2

<=> x8 - 6x6 - 4x5 + 13x4 + 12x3 - 8x2 - 8x + 4 = 4x4 - 8x2 + 8

<=> x = -1

=> x = -1

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

22 tháng 12 2016

\(1-2x\sqrt{x^2+x+1}=2x^2-x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{x^2+x+1}+x^2+x+1\right)-4x^2=0\)

\(\Leftrightarrow\left(x-\sqrt{x^2+x+1}\right)^2-\left(2x\right)^2=0\)

\(\Leftrightarrow\left(x-\sqrt{x^2+x+1}+2x\right)\left(x-\sqrt{x^2+x+1}-2x\right)=0\)

\(\Leftrightarrow\left(3x-\sqrt{x^2+x+1}\right)\left(-x-\sqrt{x^2+x+1}\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}3x-\sqrt{x^2+x+1}=0\\-x-\sqrt{x^2+x+1}=0\end{array}\right.\)

+) \(3x-\sqrt{x^2+x+1}=0\)

\(\Leftrightarrow3x=\sqrt{x^2+x+1}\left(ĐK:x\ge0\right)\)

\(\Leftrightarrow9x^2=x^2+x+1\)

\(\Leftrightarrow8x^2-x-1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1+\sqrt{33}}{16}\left(tm\right)\\x=\frac{1-\sqrt{33}}{16}\left(ktm\right)\end{array}\right.\)

+) \(-x-\sqrt{x^2+x+1}=0\)

\(\Leftrightarrow-x=\sqrt{x^2+x+1}\left(ĐK:x\le0\right)\)

\(\Leftrightarrow x^2=x^2+x+1\)

\(\Leftrightarrow x=-1\left(tm\right)\)

Vậy pt đã cho có taapk nghiệm là \(S=\left\{\frac{1+\sqrt{33}}{16};-1\right\}\)

22 tháng 12 2016

Biến đổi phương trình tương đương: \(2x\sqrt{x^2+x+1}=-2x^2+x+1\)

\(\Leftrightarrow\begin{cases}x\left(-2x^2+x+1\right)\ge0\\4x^2\left(x^2+x+1\right)=\left(-2x^2+x+1\right)^2\end{cases}\Leftrightarrow\begin{cases}x\left(2x^2-x-1\right)\le0\\8x^3+7x^2-2x-1=0\end{cases}\)

\(\Leftrightarrow\hept{\begin{cases}x\left(x-1\right)\left(2x+1\right)\le0\\\left(x+1\right)\left(8x^2-x-1\right)=0\end{array}\right.\Leftrightarrow\hept{\begin{cases}x\in\left(-\infty;-\frac{1}{2}\right)\\\left[\begin{array}{nghiempt}x=-1\\\frac{1\pm\sqrt{33}}{16}\end{array}\right.\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\\frac{1\pm\sqrt{33}}{16}\end{array}\right.\)

Vậy, phương trình có nghiệm \(x=-1\) hoặc \(x=\frac{1\pm\sqrt{33}}{16}\)

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................

13 tháng 11 2016

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)

\(\Rightarrow b^4+a^4=2\)

Từ đó ta có: a + b = 2

Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)

Dấu = xảy ra khi a = b = 1

=> x = 1

24 tháng 9 2018

toán lớp 9 mà lớp 7 làm easy

26 tháng 9 2018

ez mà má 

12 tháng 3 2016

thông điệp nhỏ:

hay kkhi ko muốn k