\(\sqrt{x+4\sqrt{x-4}}-\sqrt{x-4\sqrt{x-4}}\)

giúp mình với ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

Ta có\(\sqrt{x+4\sqrt{x-4}}\) \(=\sqrt{x-4+4\sqrt{x-4}+4}\)\(=\sqrt{\left(\sqrt{x-4}\right)^2+2.\sqrt{x-4}.2+2^2}\)

\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}\)\(=\sqrt{x-4}+2\)

Bằng cách tương tự, ta có: \(\sqrt{x-4\sqrt{x-4}}=\sqrt{x-4}-2\)

\(\Rightarrow\sqrt{x+4\sqrt{x-4}}-\sqrt{x-4\sqrt{x-4}}\)\(=\sqrt{x-4}+2-\left(\sqrt{x-4}-2\right)\)\(=4\)

Vậy [...]

27 tháng 7 2016

a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

b)\(\frac{x-4}{2\left(\sqrt{x}+2\right)}\) (ĐK:x\(\ge0\))

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-2}{2}\)

c)\(\frac{x-5\sqrt{x}+6}{3\sqrt{x}-6}\) (ĐK:x\(\ge0;x\ne4\))

\(=\frac{x-3\sqrt{x}-2\sqrt{x}+6}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}-3}{3}\)

27 tháng 7 2016

b) Tử \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\) (hằng đăngt thức số 3 )

19 tháng 10 2020

Chờ từ trưa không idol nào đụng thì thôi em xin vậy :))

BT1:

Ta có: \(A\cdot B=\sqrt{4+\sqrt{10+2\sqrt{5}}}\cdot\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(=\sqrt{16-10-2\sqrt{5}}\)

\(=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)

Từ đó thay vào: \(\left(A-B\right)^2\)

\(=A^2-2AB+B^2\)

\(=4+\sqrt{10+2\sqrt{5}}-2\left(\sqrt{5}-1\right)+4-\sqrt{10+2\sqrt{5}}\)

\(=10-2\sqrt{5}\)

\(\Rightarrow A-B=\sqrt{10-2\sqrt{5}}\)

BT2:

Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(\Leftrightarrow B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)

\(=8-2\sqrt{16-7}=8-2\cdot3=2\)

\(\Rightarrow B=\sqrt{2}\)

\(\Rightarrow A=B-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)

19 tháng 10 2020

BT3:

đk: \(\orbr{\begin{cases}x\ge2\\x< -2\end{cases}}\)

\(C=\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)

\(C=\frac{\left(x+2+\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}+\frac{\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}\)

\(C=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{x^2+4x+4-x^2+4}\)

\(C=\frac{2x^2+8x+8+2x^2-8}{4x+8}\)

\(C=\frac{4x^2+8x}{4x+8}=x\)

Vậy C = x

7 tháng 9 2020

+) Ta có: \(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\)    \(\left(ĐK:x\ge0\right)\)

        \(\Leftrightarrow4\sqrt{3x}+2\sqrt{3x}=3\sqrt{3x}+6\)

        \(\Leftrightarrow3\sqrt{3x}=6\)

        \(\Leftrightarrow\sqrt{3x}=2\)

        \(\Leftrightarrow3x=4\)

        \(\Leftrightarrow x=\frac{4}{3}\left(TM\right)\)

Vậy \(S=\left\{\frac{4}{3}\right\}\)

+) Ta có:\(\sqrt{x^2-1}-4\sqrt{x-1}=0\)    \(\left(ĐK:x\ge1\right)\)

        \(\Leftrightarrow\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)

        \(\Leftrightarrow\sqrt{x-1}.\left(\sqrt{x+1}-4\right)=0\)

        \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{x+1}=4\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=16\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x=1\left(TM\right)\\x=15\left(TM\right)\end{cases}}\)

 Vậy \(S=\left\{1,15\right\}\)

+) Ta có: \(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\)       \(\left(ĐK:x\ge0\right)\)

         \(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)

         \(\Leftrightarrow\frac{2.\left(\sqrt{x}-2\right)-\sqrt{x}}{4\sqrt{x}}< 0\)

         \(\Leftrightarrow\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)

         \(\Leftrightarrow\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)

   Để \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)mà \(4\sqrt{x}\ge0\forall x\)

    \(\Rightarrow\)\(\sqrt{x}-4< 0\)

   \(\Leftrightarrow\)\(\sqrt{x}< 4\)

   \(\Leftrightarrow\)\(x< 16\)

   Kết hợp ĐKXĐ \(\Rightarrow\)\(0\le x< 16\)

 Vậy \(S=\left\{\forall x\inℝ/0\le x< 16\right\}\)

7 tháng 9 2020

\(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\)  (Đk: x \(\ge\)0)

<=> \(4\sqrt{3x}+2\sqrt{3x}-3\sqrt{3x}=6\)

<=> \(3\sqrt{3x}=6\)

<=> \(\sqrt{3x}=2\)

<=> \(3x=4\)

<=> \(x=\frac{4}{3}\)

\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) (đk: x \(\ge\)1)

<=> \(\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)

<=> \(\sqrt{x-1}\left(\sqrt{x+1}-4\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\) 

<=> \(\orbr{\begin{cases}x-1=0\\x+1=16\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1\\x=15\end{cases}}\)(tm)

\(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) (Đk: x > 0)

<=> \(\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)

<=>\(\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)

<=>  \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)

Do \(4\sqrt{x}>0\) => \(\sqrt{x}-4< 0\)

<=> \(\sqrt{x}< 4\) <=> \(x< 16\)

Kết hợp với đk => S = {x|0 < x < 16}

28 tháng 8 2019

a, Ta có :\(\sqrt{x-\sqrt{x^2-1}}.\sqrt{x+\sqrt{x^2-1}}\)

= \(\sqrt{\left(x-\sqrt{x^2-1}\right).\left(x+\sqrt{x^2-1}\right)}\)

= \(\sqrt{x^2-\left(\sqrt{x^2-1}\right)^2}=\sqrt{x^2-|x^2-1|}\)

= \(\sqrt{x^2-\left(x^2-1\right)}=\sqrt{x^2-x^2+1}=\sqrt{1}=1\) ( TM )

22 tháng 6 2018

\(\left(\sqrt{x-\sqrt{x^2-4}}+\sqrt{x+\sqrt{x^2-4}}\right)^2=x-\sqrt{x^2-4}+2\sqrt{\left(x-\sqrt{x^2-4}\right)\left(x+\sqrt{x^2-4}\right)}\)

\(+x+\sqrt{x^2-4}=2x+2\sqrt{x^2-\left(x^2-4\right)}=2x+2\sqrt{x^2-x^2+4}=2x+2\sqrt{4}=2x+4\)

\(\Rightarrow\left(\sqrt{x-\sqrt{x^2-4}}+\sqrt{x+\sqrt{x^2-4}}\right)^2=2x+4\)

\(\Rightarrow\sqrt{x-\sqrt{x^2-4}}+\sqrt{x+\sqrt{x^2-4}}=\sqrt{2x+4}\)(đpcm)

9 tháng 6 2021

b, bạn kiểm tra lại đề nhé 

c, \(\frac{x\sqrt{x}-8+2x-4\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(x-4\right)+2\left(x-4\right)}{x-4}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(x-4\right)}{x-4}=\sqrt{x}+2\)

8 tháng 6 2018

\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(=\sqrt{x-2+2\sqrt{2}\sqrt{x-2}+2}+\sqrt{x-2-2\sqrt{2}\sqrt{x-2}+2}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{2-x}\right)^2}\)

\(=\sqrt{2}+\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\)

11 tháng 7 2017

a, \(P=\frac{x-4}{\sqrt{x}\left(\sqrt{x-2}\right)}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{x-2\sqrt{x}}\)

b. Với \(x=4+2\sqrt{3}\Rightarrow P=\frac{\sqrt{4+2\sqrt{3}}+2}{4+2\sqrt{3}-2\sqrt{4+2\sqrt{3}}}\)

\(=\frac{\sqrt{3}+1+2}{4+2\sqrt{3}-2\left(\sqrt{3}+1\right)}=\frac{3+\sqrt{3}}{2}\)

C. \(P>0\Rightarrow\frac{\sqrt{x}+2}{x-2\sqrt{x}}>0\Rightarrow x-2\sqrt{x}>0\Rightarrow x>4\)