Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\) với \(\dfrac{1}{4}< x< \dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{2}P=\sqrt{4x+2\sqrt{4x-1}}+\sqrt{4x-2\sqrt{4x-1}}\)
\(=\sqrt{\left(\sqrt{4x-1}\right)^2+2\sqrt{4x-1}+1}+\sqrt{\left(\sqrt{4x-1}\right)^2-2\sqrt{4x-1}+1}\)
\(=\sqrt{4x-1}+1+\left|\sqrt{4x-1}-1\right|\)
Do \(\dfrac{1}{4}< x< \dfrac{1}{2}\Leftrightarrow0< \sqrt{4x-1}< 1\)
\(\Rightarrow P=\dfrac{1}{\sqrt{2}}\left(\sqrt{4x-1}+1+1-\sqrt{4x-1}\right)=\sqrt{2}\)
Vậy \(P=\sqrt{2}\).
Câu c nè
Đặt \(3x=a\)
=>\(9x^2=a^2\)
Đăt \(x+2=b\)
=>\(\left(x+2\right)^2=b^2\)
ta có
\(a-b=3x-x-2=2x-2\)
<=>\(2x=a-b+2\)
Khi đó pt đã cho trở thành
\(2+3\sqrt[3]{a^2b}=a-b+3\sqrt[3]{ab^2}\)\(a-b+3\sqrt[3]{ab^2}-3\sqrt[3]{a^2b}=\left(\sqrt[3]{a}\right)^3-3\sqrt[3]{a^2b}+3\sqrt[3]{ab^2}-b^3=0\)
<=>\(\left(\sqrt[3]{a}-\sqrt[3]{b}\right)^3=0\)
<=>\(\sqrt[3]{a}=\sqrt[3]{b}\)
<=>a=b
=>3x=x+2
<=>2x-2=0
<=>x=1
nhớ tick nha
ĐK:..........
Bình phương 2 vế ta được
\(2-3x+2\sqrt{\left(1-2x\right)\left(1-x\right)}=x+4\)
\(\Leftrightarrow2\sqrt{\left(1-2x\right)\left(1-x\right)}=4x+2\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)\left(1-x\right)}=2x+1\)
\(\Leftrightarrow\left(1-2x\right)\left(1-x\right)=4x^2+4x+1\)
\(\Leftrightarrow1-3x+2x^2=4x^2+4x+1\)
\(\Leftrightarrow2x^2+7x=0\)
\(\Leftrightarrow x\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-7}{2}\end{cases}}\)
Vậy.........................................
c)
\(\sqrt{\left(x-1\right)^2}=2\)
x-1=2
x=3
d) \(\Leftrightarrow2+3\sqrt{x}+x=x+5\)
\(\Leftrightarrow3\sqrt{x}=3\)
<=> x=1
a)
\(\Leftrightarrow\sqrt{\left(x+2\right)}.\sqrt{\left(x-2\right)}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+2}=0\\\sqrt{x-2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
b)
\(\Leftrightarrow\sqrt{\left(x-2\right)+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{\left(x-2\right)-2\sqrt{2}.\sqrt{x-2}+2}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(\Leftrightarrow2\sqrt{x-2}+\sqrt{2}-\sqrt{2}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x-2}=\sqrt{2}\)
\(\Leftrightarrow x-2=2\)
\(\Leftrightarrow x=4\)
2 phần kia mình đăng sau (dài quá r)
a. ĐK \(\hept{\begin{cases}x>-3\\x>-4\end{cases}\Rightarrow x>-3}\)
Pt \(\Rightarrow\left(\sqrt{\frac{1}{x+3}}-2\right)+\left(\sqrt{\frac{5}{x+4}}-2\right)=0\)
\(\Rightarrow\frac{-11-4x}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-11-4x}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}=0\)
\(\Rightarrow\left(-11-4x\right)\left(\frac{1}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{1}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}\right)=0\)
Với \(x>-3\Rightarrow\frac{1}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{1}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}>0\)
\(\Rightarrow-11-4x=0\Rightarrow x=-\frac{11}{4}\left(tm\right)\)
Vậy \(x=-\frac{11}{4}\)
\(\sqrt{x^2-4}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
Câu a bạn bình phương 2 vế lên nha
Câu C cũng z nha bạn
\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x+2\sqrt{2\left(x-2\right)}}+\sqrt{x-2\sqrt{2\left(x-2\right)}}=2\sqrt{2}\)
\(\Leftrightarrow2x+2\sqrt{\left[x+2\sqrt{2\left(x-2\right)}\text{ }\right]\left[x-2\sqrt{2\left(x-2\right)}\text{ }\right]}=8\)
\(\Leftrightarrow2\sqrt{\left[x+2\sqrt{2\left(x-2\right)}\text{ }\right]\left[x-2\sqrt{2\left(x-2\right)}\text{ }\right]}=8-2x\)
\(\Leftrightarrow4\left[x+2\sqrt{2\left(x-2\right)}\text{ }\right]\left[x-2\sqrt{2\left(x-2\right)}\text{ }\right]=64-32x+4x^2\)
\(\Leftrightarrow4x^2-32x+64=64-32x+4x^2+\)
\(\Leftrightarrow64=64\) (Đúng)
⇒ Phương trình có vô số nghiệm.
Vậy \(S=\mathbb R\).
Kết luận: phương trình vô số nghiệm