\(\sqrt{\sqrt{3}-1}=x\sqrt{\sqrt{3}+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2022

đáp số : x =  \(\sqrt{ }\)3 - 1.

olm program chèn ký tự không phải của win hay của chorme original!

10 tháng 6 2022

Sửa lại x = \(\)\(\sqrt{ }\)2 ( 3 - 1)

căn bậc 2 của \(\sqrt{ }\)2

căn bậc 2 của   \(\sqrt{ }\)3

Giải các phương trình sau: 1. a. \(\sqrt{x+3}-\sqrt{x-4}=1\) b. \(\sqrt{10-x}+\sqrt{x+3}=5\) c. \(\sqrt{15-x}+\sqrt{3-x}=6\) d. \(\sqrt{x-1}+\sqrt{x+1}=2\) e. \(\sqrt{4x+1}-\sqrt{3x+4}=1\) f. \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\) g. \(\sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) h. \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\) i. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\) k. \(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\) l....
Đọc tiếp

Giải các phương trình sau:

1.

a. \(\sqrt{x+3}-\sqrt{x-4}=1\)

b. \(\sqrt{10-x}+\sqrt{x+3}=5\)

c. \(\sqrt{15-x}+\sqrt{3-x}=6\)

d. \(\sqrt{x-1}+\sqrt{x+1}=2\)

e. \(\sqrt{4x+1}-\sqrt{3x+4}=1\)

f. \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

g. \(\sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

h. \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)

i. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)

k. \(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)

l. \(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)

m. \(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}=1}\)

n. \(\sqrt{x}+\sqrt{x+\sqrt{1-x}}=1\)

o. \(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x}-1\)

p. \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)

q. \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

r. \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)

s. \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\)

t. \(\sqrt{3x+15}-\sqrt{4x-17}=\sqrt{x+2}\)

u. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)

v. \(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)

w. \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)

x. \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)

y. \(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x-2\right)\sqrt{\dfrac{x-1}{x-2}}=3\)

z. \(\left(x-2\right)\left(x+2\right)+4\left(x-2\right)\sqrt{\dfrac{x+2}{x-2}}=-3\)

2.

a. \(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)

b. \(\dfrac{x}{2+\dfrac{x}{2+\dfrac{x}{2+\dfrac{...}{2+\dfrac{x}{1+\sqrt{1+x}}}}}}=8\) (vế trái có 100 dấu phân thức)

c. \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)

d. \(\sqrt[4]{1-x}+\sqrt[4]{2-x}=\sqrt[4]{3-2x}\)

e. \(\sqrt[4]{1-x^2}+\sqrt[4]{1+x}+\sqrt[4]{1-x}=3\)

f. \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)

g. \(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)

h. \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)

i. \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)

k. \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)

l. \(\sqrt[3]{24+x}+\sqrt{12-x}=6\)

m. \(\sqrt[3]{2-x}+\sqrt{x-1}=1\)

n. \(1+\sqrt[3]{x-16}=\sqrt[3]{x+3}\)

o. \(\sqrt[3]{25+x}+\sqrt[3]{3-x}=4\)

p. \(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)

Làm nhanh giúp mk nhé mn ơi

5
19 tháng 11 2018

Giải pt :

1

a. ĐKXĐ : \(x\ge4\)

Ta có :

\(\sqrt{x+3}-\sqrt{x-4}=1\\ \Leftrightarrow\sqrt{x+3}=1+\sqrt{x-4}\\ \Leftrightarrow x+3=x-3+2\sqrt{x-4}\\ \Leftrightarrow6=2\sqrt{x-4}\)

\(\Leftrightarrow3=\sqrt{x-4}\\ \Leftrightarrow x-4=9\)

\(\Leftrightarrow x=13\) (TM ĐKXĐ)

Vậy \(S=\left\{13\right\}\)

b.ĐKXĐ : \(-3\le x\le10\)

Ta có :

\(\sqrt{10-x}+\sqrt{x+3}=5\\ \Leftrightarrow13+2\sqrt{-x^2+7x+30}=25\\ \Leftrightarrow\sqrt{-x^2+7x+30}=6\\ \Leftrightarrow-x^2+7x+30=36\\ \Leftrightarrow-x^2+7x-6=0\\ \Leftrightarrow-x^2+x+6x-6=0\\ \Leftrightarrow-x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(TMĐKXĐ\right)\\x=6\left(TMĐKXĐ\right)\end{matrix}\right.\)

Vậy \(S=\left\{1;6\right\}\)

19 tháng 11 2018

Câu c,d làm giống câu b

Câu e làm giống câu a

2 tháng 10 2019

mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)

1.

\(DK:x\in\left[-4;5\right]\)

\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)

\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)

Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)

\(\Rightarrow\sqrt{x-5}=0\)

\(x=5\left(n\right)\)

Vay nghiem cua PT la \(x=5\)

2 tháng 10 2019

2.

\(DK:x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)

Ta co:

\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)

Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)

TH1:

\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)

TH2:(loai)

Vay nghiem cua PT la \(x\in\left[4;9\right]\)

1 tháng 4 2020

a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)

f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)

k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0

1 tháng 4 2020

ban ơi ccachs làm

6 tháng 7 2017

2. \(\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}=\dfrac{7}{\sqrt{x-3}}\) (2)

\(\Leftrightarrow\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}-\dfrac{7}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\dfrac{\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7}{\sqrt{x-3}}=0\)

\(\Leftrightarrow\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7=0\)

\(\Leftrightarrow\left|x\right|-16+\sqrt{x^2-9}-7=0\)

\(\Leftrightarrow\left|x\right|-23+\sqrt{x^2-9}=0\)

\(\Leftrightarrow\sqrt{x^2-9}=-\left|x\right|+23\)

\(\Leftrightarrow x^2-9=-\left(-\left|x\right|+23\right)^2\)

\(\Leftrightarrow x^2-9=-\left(-\left|x\right|\right)^2-46\cdot\left|x\right|+529\)

\(\Leftrightarrow x^2-9=\left|x\right|^2-46+\left|x\right|+529\)

\(\Leftrightarrow x^2-9=x^2-46\cdot\left|x\right|+529\)

\(\Leftrightarrow-9=-46\cdot\left|x\right|+529\)

\(\Leftrightarrow46\cdot\left|x\right|=529+9\)

\(\Leftrightarrow49\cdot\left|x\right|=538\)

\(\Leftrightarrow\left|x\right|=\dfrac{269}{23}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{269}{23}\\x=-\dfrac{269}{23}\end{matrix}\right.\)

Sau khi dùng phép thử ta nhận thấy \(x\ne-\dfrac{269}{23}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{269}{23}\right\}\)

3. sửa đề: \(\sqrt{14-x}=\sqrt{x-4}\sqrt{x-1}\) (3)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{\left(x-4\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-x-4x+4}\)

\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-5x+4}\)

\(\Leftrightarrow14-x=x^2-5x+4\)

\(\Leftrightarrow14-x-x^2+5x-4=0\)

\(\Leftrightarrow10+4x-x^2=0\)

\(\Leftrightarrow-x^2+4x+10=0\)

\(\Leftrightarrow x^2-4x-10=0\)

\(\Leftrightarrow x=\dfrac{-\left(-4\right)\pm\sqrt{\left(-4\right)^2-4\cdot1\cdot\left(-10\right)}}{2\cdot1}\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{16+40}}{2}\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{56}}{2}\)

\(\Leftrightarrow x=\dfrac{4\pm2\sqrt{14}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4-2\sqrt{14}}{2}\\x=\dfrac{4+2\sqrt{14}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{14}\\x=2-\sqrt{14}\end{matrix}\right.\)

sau khi dùng phép thử ta nhận thấy \(x\ne2-\sqrt{14}\)

Vậy tập nghiệm phương trình (3) là \(S=\left\{2+\sqrt{14}\right\}\)

6 tháng 7 2017

3. \(\sqrt{14-x}-\sqrt{x-4}=\sqrt{x-1}\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

2.1

\(A=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5.1}+1}-\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}=|\sqrt{5}+1|-|\sqrt{5}-1|=2\)

2.2

\(B\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{3+2\sqrt{3.5}+5}+\sqrt{3-2\sqrt{3.5}+5}-2\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(\sqrt{3}-\sqrt{5})^2}-2\sqrt{(\sqrt{5}-1)^2}\)

\(=|\sqrt{3}+\sqrt{5}|+|\sqrt{3}-\sqrt{5}|-2|\sqrt{5}-1|=2\)

$\Rightarrow B=\sqrt{2}$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 1:

1. ĐKXĐ: \(\left\{\begin{matrix} 2x-1\geq 0\\ x-3\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x\geq 3\\ x< 5\end{matrix}\right.\Leftrightarrow 3\leq x< 5\)

2.

ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 2-x\geq 0\\ x+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 2\\ x>-1\end{matrix}\right.\Leftrightarrow 1\leq x\leq 2\)

19 tháng 7 2017

\(\sqrt{28-6\sqrt{3}}\)

\(=\sqrt{\left(3\sqrt{3}-1\right)^2}\)

\(=3\sqrt{3}-1\)

\(\sqrt{6-\sqrt{20}}\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}-1\)

\(\sqrt{2x+3+2\sqrt{\left(x+1\right)\left(x+2\right)}}\)

\(=\sqrt{\left(\sqrt{x+2}+\sqrt{x+1}\right)^2}\)

\(=\sqrt{x+2}+\sqrt{x+1}\)

\(\sqrt{2x+2-2\sqrt{x^2+2x-3}}\)

\(=\sqrt{\left(x-1\right)-2\sqrt{\left(x-1\right)\left(x+3\right)}+\left(x+3\right)}\)

\(=\sqrt{\left(\sqrt{x+3}-\sqrt{x-1}\right)^2}\)

\(=\left|\sqrt{x+3}-\sqrt{x-1}\right|\)

\(\sqrt{21-6\sqrt{6}}+\sqrt{21+6\sqrt{6}}\)

\(=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)

\(=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\)

\(=6\sqrt{2}\)

19 tháng 7 2017

\(M=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)\(\left[\dfrac{\left(\sqrt{x}+1\right)-\left(3-\sqrt{x}\right)}{\sqrt{x}+1}\right]\)

\(=\left[\dfrac{\left(x+\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}\right]\times\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}\times2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2018

a) ĐK: \(x\ge -1\)

Ta có: \(x^2+\sqrt{x+1}=1\)

\(\Leftrightarrow (x^2-1)+\sqrt{x+1}=0\)

\(\Leftrightarrow (x-1)(x+1)+\sqrt{x+1}=0\)

\(\Leftrightarrow \sqrt{x+1}[(x-1)\sqrt{x+1}+1]=0\)

\(\Rightarrow \left[\begin{matrix} \sqrt{x+1}=0(1)\\ (x-1)\sqrt{x+1}+1=0(2)\end{matrix}\right.\)

Với \((1)\Rightarrow x+1=0\Rightarrow x=-1\) (thỏa mãn)

Với \((2)\Rightarrow x\sqrt{x+1}-(\sqrt{x+1}-1)=0\)

\(\Leftrightarrow x\sqrt{x+1}-\frac{x}{\sqrt{x+1}+1}=0\)

\(\Leftrightarrow x\left(\sqrt{x+1}-\frac{1}{\sqrt{x+1}+1}\right)=0\)

\(\Leftrightarrow x.\frac{x+1+\sqrt{x+1}-1}{\sqrt{x+1}+1}=0\)

\(\Leftrightarrow x.\frac{x+\sqrt{x+1}}{\sqrt{x+1}+1}=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ x+\sqrt{x+1}=0\end{matrix}\right.\)

Với \(x+\sqrt{x+1}=0\Rightarrow x=-\sqrt{x+1}\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=x+1\end{matrix}\right.\Rightarrow x=\frac{1-\sqrt{5}}{2}\)

Vậy \(x=\left\{-1; \frac{1-\sqrt{5}}{2}; 0\right\}\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2018

b) ĐK: \(-3\leq x\leq 6\)

Ta có: \((\sqrt{3+x}+\sqrt{6-x})^2=3+x+6-x+2\sqrt{(3+x)(6-x)}\)

\(=9+2\sqrt{(3+x)(6-x)}\geq 9\)

\(\Rightarrow \sqrt{3+x}+\sqrt{6-x}\geq 3\) do \(\sqrt{3+x}+\sqrt{6-x}\) không âm.

Dấu "=" xảy ra khi \(\sqrt{(3+x)(6-x)}=0\Leftrightarrow x=-3; x=6\)

Vậy \(x=-3\) or $x=6$