\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\) làm giúp...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

\(A=\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{2-\sqrt{3}}}-\dfrac{\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}=\dfrac{2+\sqrt{3}-2+\sqrt{3}}{\sqrt{4-3}}=2\sqrt{3}\)

20 tháng 6 2018

a. \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+14\sqrt{2}=14-14\sqrt{2}+7+14\sqrt{2}=21\)

b. \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}-\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}=\sqrt{5}-\dfrac{\sqrt{5}}{2}=\dfrac{2\sqrt{5}-\sqrt{5}}{2}=\dfrac{\sqrt{5}}{2}\)

c. \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+2\sqrt{7}}=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{\sqrt{2}}{2}\)

27 tháng 7 2018

\(\dfrac{\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}}{\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}}\)

\(=\dfrac{\sqrt{1+2\sqrt{2}+2}+\sqrt{2-2\sqrt{2}+1}}{\sqrt{1+2\sqrt{2}+2}-\sqrt{2-2\sqrt{2}+1}}\)

\(=\dfrac{\sqrt{\left(1+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(1+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(=\dfrac{\left|1+\sqrt{2}\right|+\left|\sqrt{2}-1\right|}{\left|1+\sqrt{2}\right|-\left|\sqrt{2}-1\right|}\)

\(=\dfrac{1+\sqrt{2}+\sqrt{2}-1}{1+\sqrt{2}-\left(\sqrt{2}-1\right)}\)

\(=\dfrac{2\sqrt{2}}{1+\sqrt{2}-\sqrt{2}+1}\)

\(=\dfrac{2\sqrt{2}}{2}=\sqrt{2}\)

Kết luận: ...

26 tháng 6 2018

Mấy bài này rất dài , đăng từ từ thôi nhé bạn .

\(1.\dfrac{\sqrt{30}-\sqrt{2}}{\sqrt{8}-\sqrt{15}}-\sqrt{8-\sqrt{49+8\sqrt{3}}}=\dfrac{\sqrt{60}-\sqrt{4}}{\sqrt{16-2\sqrt{15}}}-\sqrt{8-\sqrt{48+2.4\sqrt{3}+1}}=\dfrac{2\left(\sqrt{15}-1\right)}{\sqrt{\left(\sqrt{15}-1\right)^2}}-\sqrt{8-|4\sqrt{3}+1|}=2-\sqrt{4-2.2\sqrt{3}+3}=2-|2-\sqrt{3}|=\sqrt{3}\)

\(2.\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\dfrac{2\sqrt{2}+\sqrt{6}}{\sqrt{4}+\sqrt{4+2\sqrt{3}}}+\dfrac{2\sqrt{2}-\sqrt{6}}{\sqrt{4}-\sqrt{4-2\sqrt{3}}}=\dfrac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{2\sqrt{2}+\sqrt{6}}{2+|\sqrt{3}+1|}+\dfrac{2\sqrt{2}-\sqrt{6}}{2-|\sqrt{3}-1|}=\dfrac{2\sqrt{2}-\sqrt{6}}{3-\sqrt{3}}+\dfrac{2\sqrt{2}+\sqrt{6}}{3+\sqrt{3}}=\dfrac{12\sqrt{2}-2\sqrt{18}}{9-3}=\dfrac{12\sqrt{2}-6\sqrt{2}}{6}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)

26 tháng 6 2018

\(3.\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{\sqrt{2}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{2}{4+\sqrt{5+2\sqrt{5}+1}}+\dfrac{2}{4-\sqrt{5-2\sqrt{5}+1}}=\dfrac{2}{4+|\sqrt{5}+1|}+\dfrac{2}{4-|\sqrt{5}-1|}=\dfrac{2}{\sqrt{5}+5}+\dfrac{2}{5-\sqrt{5}}=\dfrac{10-2\sqrt{5}+10+2\sqrt{5}}{20}=\dfrac{20}{20}=1\)

3 tháng 8 2018

\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{3}{2-\sqrt{x}}+\dfrac{3\sqrt{x}-2}{x-2}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{2\sqrt{x}-x}\right)=\dfrac{x-2\sqrt{x}+3\sqrt{x}+6+3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

7 tháng 8 2018

\(A=\dfrac{\sqrt{a+1}}{\sqrt{a+1}.\sqrt{a-1}-\sqrt{a}.\sqrt{a+1}}+\dfrac{1}{\sqrt{a-1}+\sqrt{a}}+\dfrac{a\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\\ =\dfrac{\sqrt{a+1}}{\sqrt{a+1}\left(\sqrt{a-1}-\sqrt{a}\right)}+\dfrac{1}{\sqrt{a-1}+\sqrt{a}}+a\\ =\dfrac{1}{\sqrt{a-1}-\sqrt{a}}+\dfrac{1}{\sqrt{a-1}+\sqrt{a}}+a\\ =\dfrac{\sqrt{a-1}+\sqrt{a}}{a-1-a}+\dfrac{\sqrt{a-1}-\sqrt{a}}{a-1-a}+a\\ =\dfrac{2\sqrt{a-1}}{-1}+a\\ =-2\sqrt{a-1}+a.\)

26 tháng 6 2018

bài này trước, bài trên để coi lại đã

Đặt \(A=\sqrt{2-\sqrt{3}}-\sqrt{\dfrac{3}{2}}\Rightarrow A\sqrt{2}=\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\Rightarrow A=-\dfrac{1}{\sqrt{2}}=-\dfrac{\sqrt{2}}{2}\)

26 tháng 6 2018

đặt \(A=\dfrac{\sqrt{6-\sqrt{11}}}{\sqrt{22}-\sqrt{2}}-\dfrac{6}{\sqrt{2}}-\dfrac{3}{\sqrt{2}+1}\)

\(\Rightarrow A\sqrt{2}=\dfrac{\sqrt{12-2\sqrt{11}}}{\sqrt{22}-\sqrt{2}}-\dfrac{6\sqrt{2}}{\sqrt{2}}-\dfrac{3\sqrt{2}}{\sqrt{2}+1}=\dfrac{\sqrt{11}-1}{\sqrt{2}\left(\sqrt{11}-1\right)}-\dfrac{6\sqrt{2}}{\sqrt{2}}-\dfrac{3\sqrt{2}}{\sqrt{2}+1}=\dfrac{1}{\sqrt{2}}-\dfrac{6\sqrt{2}}{\sqrt{2}}-\dfrac{3\sqrt{2}}{\sqrt{2}+1}=\dfrac{\sqrt{2}+1-12-6\sqrt{2}-6}{\sqrt{2}\left(\sqrt{2}+1\right)}=\dfrac{-17-5\sqrt{2}}{\sqrt{2}\left(\sqrt{2}+1\right)}\)

\(\Rightarrow A=\dfrac{-17-5\sqrt{2}}{\sqrt{2}\left(\sqrt{2}+1\right)}\cdot\dfrac{1}{\sqrt{2}}=\dfrac{-17-5\sqrt{2}}{2\left(\sqrt{2}+1\right)}=\dfrac{\left(-17-5\sqrt{2}\right)\left(\sqrt{2}-1\right)}{2}=\dfrac{7-12\sqrt{2}}{2}\)

Kl: \(A=\dfrac{7-12\sqrt{2}}{2}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2018

Bài 1: Ta có:

\(\frac{\sqrt{8-4\sqrt{3}}}{\sqrt{\sqrt{6}-\sqrt{2}}}\sqrt{\sqrt{6}+\sqrt{2}}=\frac{\sqrt{8-4\sqrt{3}}}{\sqrt{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})}}(\sqrt{6}+\sqrt{2})\)

\(=\frac{\sqrt{8-4\sqrt{3}}}{\sqrt{6-2}}(\sqrt{6}+\sqrt{2})\)

\(=\frac{\sqrt{6+2-2\sqrt{6.2}}}{2}(\sqrt{6}+\sqrt{2})\)

\(=\frac{\sqrt{(\sqrt{6}-\sqrt{2})^2}}{2}(\sqrt{6}+\sqrt{2})\)

\(=\frac{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})}{2}=\frac{6-2}{2}=2\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2018

Bài 2:

\(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)

\(\Rightarrow A^2=8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}+2\sqrt{(8+2\sqrt{10+2\sqrt{5}})(8-2\sqrt{10+2\sqrt{5}})}\)

\(=16+2\sqrt{8^2-(2\sqrt{10+2\sqrt{5}})^2}\)

\(=16+2\sqrt{64-4(10+2\sqrt{5})}\)

\(=16+2\sqrt{24-8\sqrt{5}}=16+2\sqrt{20+4-2\sqrt{20.4}}\)

\(=16+2\sqrt{(\sqrt{20}-\sqrt{4})^2}\)

\(=16+2(\sqrt{20}-2)=12+2\sqrt{20}=10+2+2\sqrt{10.2}=(\sqrt{10}+\sqrt{2})^2\)

\(\Rightarrow A=\sqrt{10}+\sqrt{2}\)

4 tháng 4 2017

\(A=\sqrt{2+2\sqrt{2}+1}-\sqrt{2-2\sqrt{2}+1}\)
\(A=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(A=\sqrt{2}+1-\left|\sqrt{2}-1\right|\)
\(A=\sqrt{2}+1-\left(\sqrt{2}-1\right)\) ( vì căn 2 > 1)
\(A=2\)

4 tháng 4 2017

\(B=\dfrac{\sqrt{3}+1-\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(B=\dfrac{2}{3-1}=\dfrac{2}{2}=1\)

8 tháng 7 2018

\(a.\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{3}.\sqrt{3}}{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}=\sqrt{6}-\dfrac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{3\sqrt{2}-3\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{-3\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=-3\) \(b.\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)=\left(2\sqrt{2}-\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right)=8-3=5\) \(c.\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{3+\sqrt{5}-3+\sqrt{5}}{9-5}:\sqrt{5}=\dfrac{2\sqrt{5}}{4}.\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}.\dfrac{1}{\sqrt{5}}=\dfrac{1}{2}\) \(d.\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)=\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)=9-a\)

8 tháng 7 2018

cảm ơn bạn nhiều nhiều nha !!!