Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{81.16.169}=\sqrt{81}.\sqrt{16}.\sqrt{169}=9.4.13=468\)
\(\sqrt{10}.\sqrt{810}=\sqrt{10.10}.\sqrt{81}=10.9=90\)
\(\sqrt{64}.\sqrt{81.100}-\sqrt{64}.\sqrt{196.16}=\sqrt{64}\left(\sqrt{81}.\sqrt{100}-\sqrt{196}.\sqrt{16}\right)=8.\left(9.10-14.4\right)=8.34=272\)
Đặt \(A=\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
\(B=\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\)
\(\Rightarrow A.B=\left(x^2-6x+64\right)-\left(x^2-6x+36\right)=28\)
mà \(A=18\Rightarrow B=\frac{28}{18}=\frac{14}{9}\)
a) \(A=\sqrt{64}+4\sqrt{4}+2016=\sqrt{8^2}+4.\sqrt{2^2}+2016=8+4.2+2016=2032\)
b) \(B=2\sqrt{8}-3\sqrt{18}+4\sqrt{128}-5\sqrt{32}=4\sqrt{2}-9\sqrt{2}+32\sqrt{2}-20\sqrt{2}\)
\(=\sqrt{2}\left(4-9+32-20\right)=7\sqrt{2}\)
a,
\(A=\sqrt{8}^2+2.\sqrt{8}.\sqrt{2}+\sqrt{2}^2+2014\)
\(=\left(\sqrt{8}+\sqrt{2}\right)^2+2014\)
a: \(\Leftrightarrow2x+3=14-6\sqrt{5}\)
=>2x=11-6 căn 5
hay \(x=\dfrac{11-6\sqrt{5}}{2}\)
b: \(\Leftrightarrow\sqrt{7x}+5=11+4\sqrt{7}\)
=>căn 7x=6+4 căn 7
=>\(x=\dfrac{\left(6+4\sqrt{7}\right)^2}{7}\)
d: \(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
=>-căn x-1=-17
=>căn x-1=17
=>x-1=289
=>x=290
Ta có \(\sqrt{8}=2\sqrt{2};3=\sqrt{9}\)
Mà \(2\sqrt{2}< \sqrt{9}\) (do 8<9 nên \(\sqrt{8}< \sqrt{9}\))
Nên \(\sqrt{8}< 3 \)
Suy ra \(\sqrt{8}-1< 3-1\)
Hay \(\sqrt{8}-1< 2\)
b,Ta có \(\sqrt{64}+\sqrt{23}< \sqrt{64}+\sqrt{25}=13\)
\(\sqrt{17}+\sqrt{85}>\sqrt{16}+\sqrt{81}=13\)
Do đó \(\sqrt{64}+\sqrt{23}< \sqrt{17}+\sqrt{85}\)
c,Ta có : \(\sqrt{17}-\sqrt{8}>\sqrt{16}-\sqrt{9}=4-3=1\)(Lưu ý:\(-\sqrt{8}>-\sqrt{9}\))
\(\sqrt{35}-\sqrt{26}< \sqrt{36}-\sqrt{25}=6-5=1\)
Do đó \(\sqrt{17}-\sqrt{8}>\sqrt{35}-\sqrt{26}\)
\(A=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}=\sqrt{3^2-\left(\sqrt{5}\right)^2}=\sqrt{4}=2\)
\(B=\sqrt{150.27.96}=\sqrt{150}.\sqrt{27}.\sqrt{96}=5\sqrt{6}.3\sqrt{3}.4\sqrt{6}=360\sqrt{3}\)
\(C=\left(\sqrt{27}+\sqrt{48}\right)^2-\left(\sqrt{27}-\sqrt{48}\right)^2\)\(=\left[\left(\sqrt{27}+\sqrt{48}-\sqrt{27}+\sqrt{48}\right)\left(\sqrt{27}+\sqrt{48}+\sqrt{27}-\sqrt{48}\right)\right]\)
\(=2\sqrt{27}.2\sqrt{48}=2.3\sqrt{3}.2.4\sqrt{3}=144\)
\(D=\sqrt{137^2-88^2}-\sqrt{192^2-111^2}=\sqrt{\left(137+88\right)\left(137-88\right)}-\sqrt{\left(192+111\right)\left(192-111\right)}\)
\(=\sqrt{225.49}-\sqrt{303.81}=15.7-9.\sqrt{303}=9\left(\frac{35}{3}-\sqrt{303}\right)\)
\(E=\sqrt{\frac{225}{4}.\frac{81}{25}.\frac{49}{64}}=\frac{15}{2}.\frac{9}{5}.\frac{7}{8}=\frac{189}{16}\)
\(F=\sqrt{\frac{27}{25}}.\sqrt{\frac{49}{189}}.\sqrt{\frac{700}{99}}=\frac{3\sqrt{3}}{5}.\frac{7}{3\sqrt{21`}}.\frac{10\sqrt{7}}{3\sqrt{11}}=\frac{14}{3\sqrt{11}}\)
\(H=\sqrt{105}.\left[\sqrt{\frac{15}{7}}-\sqrt{\frac{35}{5}}+\sqrt{\frac{21}{5}}\right]=\sqrt{105}.\left[\sqrt{\frac{15}{7}}-\sqrt{7}+\sqrt{\frac{21}{5}}\right]\)
\(=\sqrt{105}.\left[\frac{\sqrt{75}-\sqrt{49}+\sqrt{147}}{\sqrt{35}}\right]=\sqrt{3}\left(12\sqrt{3}-7\right)=36-7\sqrt{3}\)
\(K=\sqrt{64.14.21.54}-\sqrt{35.45.12}=8.\sqrt{14}.\sqrt{21}.3\sqrt{6}-\sqrt{35}.3\sqrt{5}.2\sqrt{3}\)
\(=24.\sqrt{14.21.6}-6\sqrt{35.5.3}=24.42-30\sqrt{21}=30\left(\frac{168}{5}-\sqrt{21}\right)\)
a/ \(\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9x-9}+24.\sqrt{\dfrac{x-1}{64}}=-17\) ( đkxđ : \(x\ge1\) )
\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{3^2\left(x-1\right)}+24.\sqrt{\dfrac{x-1}{8^2}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3.3}{2}.\sqrt{x-1}+\dfrac{24}{8}\sqrt{x-1}=-17\)
\(\Leftrightarrow\) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\dfrac{1}{2}-\dfrac{9}{2}+3\right)=-17\)
\(\Leftrightarrow\sqrt{\left(x-1\right)}.\left(-1\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{-17}{-1}=17\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=17^2\)
\(\Leftrightarrow x-1=289\)
\(\Leftrightarrow x=289+1=290\)
vậy x= 290 là nghiệm của phương trình a
b/ \(3x-7\sqrt{x}+4=0\) ( đkxđ : \(x\ge0\) )
\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(3\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-4=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{4}{3}\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{9}\\x=1\end{matrix}\right.\)
vậy phương trình có tập nghiệm S=\(\left\{1;\dfrac{16}{9}\right\}\)
c/ \(-5x+7\sqrt{x}+12=0\) ( đkxđ: \(x\ge0\) )
\(\Leftrightarrow-\left(5x+5\sqrt{x}-12\sqrt{x}-12\right)=0\)
\(\Leftrightarrow-\left[5\sqrt{x}\left(\sqrt{x}+1\right)-12\left(\sqrt{x}+1\right)\right]\)= 0
\(\Leftrightarrow-\left(5\sqrt{x}-12\right)\left(\sqrt{x}+1\right)=0\)
vì \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1>0\)
\(\Rightarrow5\sqrt{x}-12=0\)
\(\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\Rightarrow x=\dfrac{144}{25}\)
vậy \(x=\dfrac{144}{25}\) là nghiệm của phương trình c
a, \(=2\sqrt{7}-8+15\sqrt{7}-12=17\sqrt{7}-20\)
b, \(=2\sqrt{2}-10\sqrt{2}+4\sqrt{2}=-4\sqrt{2}\)
c, \(=\frac{3}{8}.\frac{4}{3}-2.\frac{2}{5}=\frac{1}{2}-\frac{4}{5}=-\frac{3}{10}\)
d, \(\sqrt{\left(\sqrt{3-1}\right)^2}-\sqrt{\left(\sqrt{3-2}\right)^2}=\sqrt{3-1}-\sqrt{3-2}=\sqrt{2}-\sqrt{1}=\sqrt{2}-1\)
e, \(\sqrt{2-3}\) không tồn tại
đặt \(\sqrt{x^2-6x+36}=\)M;\(\sqrt{x^2-6x+64}=\)N ,hiển nhiên M\(\ne\)N
M+N=7 <=>(M+N)(M-N)=7(M-N) <=>M2-N2=7(M-N) <=>-28=7(M-N) <=>N-M=4
A=2N-2M=2.4=8
Đặt \(\sqrt{x^2-6x+36}=a\ge0\Rightarrow\sqrt{x^2-6x+64}=\sqrt{a^2+28}\)
Vậy ta có phương trình :
\(a+\sqrt{a^2+28}=7\Leftrightarrow\sqrt{a^2+28}=7-a\Leftrightarrow\hept{\begin{cases}a\le7\\a^2+28=a^2-14a+49\end{cases}\Leftrightarrow a=\frac{3}{2}}\)
ta có : \(A=\sqrt{4\left(x^2-6x+36\right)+112}-2\sqrt{x^2-6x+36}=\sqrt{4a^2+112}-2a=8\)
làm hộ tiu nhé
\(\sqrt{64}\)=8