Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(M=\sqrt{1^2+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)
\(=\sqrt{1^2+\dfrac{1}{\left(\dfrac{1}{2017}\right)^2}+\dfrac{1}{\left(-\dfrac{2018}{2017}\right)^2}}+\dfrac{2017}{2018}\)
\(=\sqrt{\left(\dfrac{1}{1}+\dfrac{1}{\dfrac{1}{2017}}+\dfrac{1}{-\dfrac{2018}{2017}}\right)^2}+\dfrac{2017}{2018}\)
\(=1+2017-\dfrac{2017}{2018}+\dfrac{2017}{2018}\)
=2018
Áp dụng bđt Svacxo ta có :
\(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2017}+\sqrt{2018}\)
Dấu bằng xảy ra khi:
\(\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vl\right)\)
Suy ra không xảy ra dấu bằng
Vậy \(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)
a/ Ta có:
\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)
\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)
a.\(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2019}-\sqrt{2018}}{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)
a: Đặt a=2017
\(A=\sqrt{1+\left(\dfrac{1}{a}+\dfrac{1}{a+2}\right)^2}\)
\(=\sqrt{1+\left(\dfrac{2a+2}{a\left(a+2\right)}\right)^2}\)
\(=\sqrt{1+\dfrac{4a^2+8a+4}{a^2\cdot\left(a+2\right)^2}}=\sqrt{\dfrac{\left(a^2+a\right)^2+4a^2+8a+4}{a^2\left(a+2\right)^2}}\)
\(=\sqrt{\dfrac{\left(a^2+a\right)^2+4\left(a+1\right)^2}{a^2\left(a+2\right)^2}}\)
\(=\dfrac{\sqrt{\left(a^2+a\right)^2+4\left(a+1\right)^2}}{a\left(a+2\right)}\)
\(=\dfrac{\sqrt{\left(2017^2+2017\right)^2+4\cdot2018^2}}{2017\cdot2019}\)
b: Đặt 2017=a
\(B=\sqrt{a^2+a^2\cdot\left(a+1\right)^2+\left(a+1\right)^2}\)
\(=\sqrt{2a^2+2a+1+\left(a^2+a\right)^2}\)
\(=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1\)
\(=2017^2+2017+1=4070307\)
\(=\dfrac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}-\dfrac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\dfrac{\sqrt{3}+\sqrt{4}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{3}-\sqrt{4}\right)}-...+\dfrac{\sqrt{2017}+\sqrt{2018}}{\left(\sqrt{2017}+\sqrt{2018}\right)\left(\sqrt{2017}-\sqrt{2018}\right)}\)
\(=\dfrac{\sqrt{1}+\sqrt{2}}{1-2}-\dfrac{\sqrt{2}+\sqrt{3}}{2-3}+\dfrac{\sqrt{3}+\sqrt{4}}{3-4}-...+\dfrac{\sqrt{2017}+\sqrt{2018}}{2017-2018}\)
\(=-\left(\sqrt{1}+\sqrt{2}\right)+\sqrt{2}+\sqrt{3}-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2017}+\sqrt{2018}\right)\)
\(=-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...-\sqrt{2017}-\sqrt{2018}\)
\(=-\sqrt{1}-\sqrt{2018}\)
Đat 2017,5=t Ta có
\(\sqrt{\dfrac{\left(t+0,5\right)^2+\left(t-0,5\right)^2\cdot\left(t+0,5\right)^2+\left(t-0,5\right)^2}{\left(t+0,5\right)^2}}+\dfrac{t-0,5}{t+0,5}\\ =\sqrt{\dfrac{t^2+t+0,25+t^4-0,5t^2+0,0625+t^2-t+0,25}{\left(t+0,5\right)^2}}+\dfrac{t-0,5}{t+0,5}\\ =\dfrac{\sqrt{t^4+1,5t^2+0,5625}}{t+0,5}+\dfrac{t-0,5}{t+0,5}\\ =\dfrac{t^2+0,75+t-0,5}{t+0,5}\\ =\dfrac{\left(t+0,5\right)^2}{t+0,5}\\ =t+0,5\)thay t=2017,5 vào suy ra A=2017,5+0,5=2018
Giải:
\(\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)
\(=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{\left(\dfrac{1}{2017}\right)^2}+\dfrac{1}{\left(-\dfrac{2018}{2017}\right)^2}}+\dfrac{2017}{2018}\)
\(=\sqrt{\left(\dfrac{1}{1}+\dfrac{1}{\dfrac{1}{2017}}+\dfrac{1}{-\dfrac{2018}{2017}}\right)^2}+\dfrac{2017}{2018}\) (\(\left\{{}\begin{matrix}1>0\\2017^2>0\\\dfrac{2017^2}{2018^2}>0\end{matrix}\right.\Leftrightarrow1+2017^2+\dfrac{2017^2}{2018^2}>0\ne0\))
\(=1+2017+-\dfrac{2017}{2018}+\dfrac{2017}{2018}\)
\(=2018\)
Vậy ...