Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x-9\ne0\Rightarrow x\ne9\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)
\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)
2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)
\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)
\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)
Với \(x\ge-\frac{1}{2}\)
2f(x) = \(2\sqrt{\left(2x+1\right)\left(x+2\right)}+4\sqrt{x+3}-4x\)
\(=-\left(2x+1\right)+2\sqrt{\left(2x+1\right)\left(x+2\right)}-\left(x+2\right)-\left(x+3\right)+4\sqrt{x+3}-4+10\)
\(=-\left(\sqrt{2x+1}-\sqrt{x+2}\right)^2-\left(\sqrt{x+3}-2\right)^2+10\le10\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+1=x+2\\x+3=4\end{cases}}\Leftrightarrow x=1\)
=> min 2f(x) = 10 tại x = 1
=> min f(x) = 5 tại x = 1
Câu 1
a)
Để biểu thức A có nghĩa thì \(2x^2-3x+1\ge0\Leftrightarrow\left(x-1\right)\left(2x-1\right)\ge0\)
\(\Leftrightarrow x\ge1\)
b)
Để biểu thức B có nghĩa thì \(x-1\ge0;2x-1\ge0\Rightarrow x\ge1\)
c)
Với \(x\ge1\) thì biểu thức A luôn luôn bằng biểu thức B
d)
Vô lý vcl
Câu 2
Xài BĐT Bunhiacopski:
\(A^2=\left(2x+3y\right)^2=\left(2\cdot x+3\cdot y\right)^2\le13\left(x^2+y^2\right)=1521\)
\(\Rightarrow A\le39\)
Câu 1:
a) A=\(\sqrt{2x^2-3x+1}\)
ĐKXĐ: \(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)
b) B=\(\sqrt{x-1}\cdot\sqrt{2x-1}\)
ĐKXĐ:\(\orbr{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\)
=>\(x\ge1\)
c) Với \(x\ge1\)thì A=B đc xác định
d) Với \(x\le\frac{1}{2}\)thì A có nghĩa,B không có nghĩa
a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)
\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)
Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)
hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)
A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)
+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
Vậy \(x\ge1\)thì A = B
d) \(x\le\frac{1}{2}\)
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
Ta có: -2 2 x – 1 = 2 x 2 + 2x +3 ⇔ 2 x 2 +2x + 3 + 2 2 x + 1=0
⇔ 2 x 2 + 2(1 + 2 )x +4 =0
∆ ' = b ' 2 – ac= 1 + 2 2 - √2 .4= 1+2 2 +2 - 4 2
= 1-2 2 +2 = 2 - 1 2 > 0
Vậy với x= - 2 hoặc x = -2 thì giá trị của hai biểu thức trên bằng nhau