Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=3+3^2+3^3+...+3^{120}\)
\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)
\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)
Suy ra B chia hết cho 3 (đpcm)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)
\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)
\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)
Suy ra B chia hết cho 4 (đpcm)
c) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)
\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)
\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)
Suy ra B chia hết cho 13 (đpcm)
a) tia Ob nằm giữa Oa và Ob vì :
^aOb+^bOc=^aOc
^aOb<^bOc(600<1200)
b) VìtiaObnằm giữa OavàOcnên:
^aOb+^bOc=^aOc
600+ ^bOc=1200
^bOc=1200−600
⇒ ^bOc=600
TiaOblàtiaphângiaccua^aOcvì:
^aOb+^bOc=^aOc
^aOb=^bOc=1600
P/s : bạn vào câu hỏi tương tự để xem thêm nhé !
a,Vì ^AOB < ^AOC (60o < 120o)
=>OB nằm giữa OA và OC (1)
b,Ta có ^AOB + ^BOC = ^AOC
60o + ^BOC = 120o
^BOC = 60o
=>^AOB = ^BOC = 60o (2)
Từ (1) và (2)=>Ob là p/g ^AOC
c,TA có ^AOC + ^COD = 180o(góc bẹt)
=>^COD=180o - 120o
=>^COD=60o
=> ^COE=^EOD=\(\frac{60^o}{2}=30^o\)
Ta có: ^EOB=^BOC + ^COE
^EOB=60o + 30o
^EOB= 90o
a) Tự zẽ hình nha
ta có\(\widehat{bOc}=\widehat{bOa}-\widehat{cOa}\)
=>\(\widehat{bOc}=120^0-100^0=20^0\)
b)\(tacó\hept{\begin{cases}\widehat{bOm}=\widehat{bOa}-\widehat{mOa}=120^0-110^0=10^0\\\widehat{mOc}=\widehat{mOa}-\widehat{cOa}=120^0-110^0=10^0\end{cases}}\)
=>\(\widehat{bOm}=\widehat{mOc}\left(1\right)\)
ta lại có \(\widehat{bOa}>\widehat{mOc}>\widehat{cOa}\)
=>\(mO\)nằm giữa 2 tia \(Ob\)zà \(Oc\left(2\right)\)
từ 1 zà 2 suy ra
mO là tia phân giác của góc \(bOc\)
\(\widehat{AOB}\)= \(140^o\)
\(\widehat{AOC}\)= \(160^o\)
Nên để tính góc \(\widehat{BOC}\)ta lấy
\(\widehat{AOC}\)- \(\widehat{AOB}\) = \(160^o\)- \(140^o\) = \(20^o\)
\(\widehat{BOC}\) = \(20^o\)
Góc COD :
AOD đối nhau nên góc \(\widehat{AOD}\)= \(180^o\)
Rồi ta lấy góc \(\widehat{AOD}\)- \(\widehat{AOC}\)= \(180^o\) - \(160^o\) = \(20^o\)
\(\widehat{COD}\) = \(20^o\)
Tia OC là tia phân giác của góc \(\widehat{BOD}\)
VÌ tia OC nằm giữa góc \(\widehat{BOD}\)
CHÚC BẠN THÀNH CÔNG
Từ đề bài, ta suy ra OB và OC cùng nằm trên một nửa mặt phẳng bờ OA. Do đó, tia OC nằm giữa hai tia OB, OC. Sử dụng tính chất cộng góc, ta có B O C ^ = 32 °