so sánh 

 a)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2022

a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²

2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³

A = 2A - A

= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)

= 2²⁰²³ - 2⁰

= 2²⁰²³ - 1

Vậy A = B

b) A = 2021 . 2023

= (2022 - 1).(2022 + 1)

= 2022.(2022 + 1) - 2022 - 1

= 2022² + 2022 - 2022 - 1

= 2022² - 1 < 2022²

Vậy A < B

25 tháng 10 2021

a. S = 1 + 2 + 2^2 + 2^3 + ... + 2^8 + 2^9

Ta có: 2 = 1 . 2

           2^2 = 2 . 2

           2^3 = 2^2 . 2

           .....

=>       1 + 2 + 2^2 + ... + 2^8 + (2^8 . 2)

=>       1 + 2 + 2^2 + ... + (2^8 . 3)

=>       1 + 2 + 2^2 + ... + 2^7 + (2^7 .6)

=>       1 + 2 + 2^2 + ... + (2^7 . 7)

=>        .....

=>        1 + 2 . 311

27 tháng 7 2021

a t21B uhx53

DD
14 tháng 10 2021

a) \(B=2012.2014=\left(2013-1\right)\left(2013+1\right)=2013.2013-2013+2013-1\)

\(=2013.2013-1< 2013.2013=A\)

b) \(A=2+2^2+2^3+...+2^{2014}\)

\(2A=2^2+2^3+2^4+...+2^{2015}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{2015}\right)-\left(2+2^2+2^3+...+2^{2014}\right)\)

\(A=2^{2015}-2< 2^{2015}=B\)

A= 1+2+22+23+.......+298+299     

A= (1+2)+(22+23)+.......+(298+299 )

A=3+22.(1+2)+...+298.(1+2)

A=   3+22.3+...+298.3 

A=3.(22+...+298)

Vid 3 chia hết cho 3 nên A chia hết cho 3

Đơn giản như đang giỡn

HT

28 tháng 10 2021

giúp mình với

25 tháng 7 2021

i) \(2345-1000\div\left[19-2\left(21-18\right)^2\right]\)

\(=\)\(2345-1000\div\left[19-2.3^2\right]\)

\(=\)\(2345-1000\div\left[19-2.9\right]\)

\(=\)\(2345-1000\div\left[19-18\right]\)

\(=\)\(2345-1000\div1\)

\(=\)\(2345-1000\)

\(=\)\(1345\)

j) \(128-\left[68+8\left(37-35\right)^2\right]\div4\)

\(=\)\(128-\left[68+8.2^2\right]\div4\)

\(=\)\(128-\left[68+8.4\right]\div4\)

\(=\)\(128-\left[68+32\right]\div4\)

\(=\)\(128-100\div4\)

\(=\)\(128-25\)

\(=\)\(3\)

k) \(568-\left\{5\left[143-\left(4-1\right)^2\right]+10\right\}\div10\)

\(=\)\(568-\left\{5\left[143-3^2\right]+10\right\}\div10\)

\(=\)\(568-\left\{5\left[143-9\right]+10\right\}\div10\)

\(=\)\(568-\left\{5.134+10\right\}\div10\)

\(=\)\(568-\left\{670+10\right\}\div10\)

\(=\)\(568-680\div10\)

\(=\)\(568-68\)

\(=\)\(500\)

25 tháng 7 2021

a) \(107-\left\{38+\left[7.3^2-24\div6+\left(9-7\right)^3\right]\right\}\div15\)

\(=\)\(107-\left\{38+\left[7.3^2-24\div6+2^3\right]\right\}\div15\)

\(=\)\(107-\left\{38+\left[7.9-4+8\right]\right\}\div15\)

\(=\)\(107-\left\{38+\left[63-4+8\right]\right\}\div15\)

\(=\)\(107-\left\{38+67\right\}\div15\)

\(=\)\(107-105\div15\)

\(=\)\(107-7\)

\(=\)\(7\)

b) \(307-\left[\left(180-160\right)\div2^2+9\right]\div2\)

\(=\)\(307-\left[20\div4+9\right]\div2\)

\(=\)\(307-\left[5+9\right]\div2\)

\(=\)\(307-14\div2\)

\(=\)\(307-7\)

\(=\)\(300\)

c) \(205-\left[1200-\left(4^2-2.3\right)^3\right]\div40\)

\(=\)\(205-\left[1200-\left(16-6\right)^3\right]\div40\)

\(=\)\(205-\left[1200-10^3\right]\div40\)

\(=\)\(205-\left[1200-1000\right]\div40\)

\(=\)\(205-200\div40\)

\(=\)\(205-5\)

\(=\)\(200\)

21 tháng 6 2019

a, \(3^4\div3^2-\left[120-\left(2^6.2+5^2.2\right)\right]\)

\(=3^2-\left\{120-\text{[}2.\left(2^6+5^2\right)\text{]}\right\}\)

\(=3^2-\left(120-2\cdot89\right)\)

\(=9--58=9+58=67\)

21 tháng 6 2019

1. \(a,3^4:3^2-\left[120-(2^6\cdot2+5^2\cdot2)\right]\)

\(=3^2-\left[120-\left\{(2^6+5^2)\cdot2\right\}\right]\)

\(=3^2-\left[120-\left\{(64+25)\cdot2\right\}\right]\)

\(=9-\left[120-89\cdot2\right]\)

\(=9-\left[120-178\right]=9-(-58)=67\)

b, Tương tự như bài a

2.a,\(4^x\cdot5+4^2\cdot2=2^3\cdot7+56\)

\(\Leftrightarrow4^x\cdot5+16\cdot2=8\cdot7+56\)

\(\Leftrightarrow4^x\cdot5+32=56+56\)

\(\Leftrightarrow4^x\cdot5+32=112\)

\(\Leftrightarrow4^x\cdot5=80\)

\(\Leftrightarrow4^x=16\Leftrightarrow4^x=4^2\Leftrightarrow x=2\)

\(b,24:(2x-1)^3-2=1\)

\(\Leftrightarrow24:(2x-1)^3=3\)

\(\Leftrightarrow(2x-1)^3=8\)

\(\Leftrightarrow(2x-1)^3=2^3\)

\(\Leftrightarrow2x-1=2\)

Làm nốt là xong thôi