Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. S = 1 + 2 + 2^2 + 2^3 + ... + 2^8 + 2^9
Ta có: 2 = 1 . 2
2^2 = 2 . 2
2^3 = 2^2 . 2
.....
=> 1 + 2 + 2^2 + ... + 2^8 + (2^8 . 2)
=> 1 + 2 + 2^2 + ... + (2^8 . 3)
=> 1 + 2 + 2^2 + ... + 2^7 + (2^7 .6)
=> 1 + 2 + 2^2 + ... + (2^7 . 7)
=> .....
=> 1 + 2 . 311
a) \(B=2012.2014=\left(2013-1\right)\left(2013+1\right)=2013.2013-2013+2013-1\)
\(=2013.2013-1< 2013.2013=A\)
b) \(A=2+2^2+2^3+...+2^{2014}\)
\(2A=2^2+2^3+2^4+...+2^{2015}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2015}\right)-\left(2+2^2+2^3+...+2^{2014}\right)\)
\(A=2^{2015}-2< 2^{2015}=B\)
A= 1+2+22+23+.......+298+299
A= (1+2)+(22+23)+.......+(298+299 )
A=3+22.(1+2)+...+298.(1+2)
A= 3+22.3+...+298.3
A=3.(22+...+298)
Vid 3 chia hết cho 3 nên A chia hết cho 3
Đơn giản như đang giỡn
HT
i) \(2345-1000\div\left[19-2\left(21-18\right)^2\right]\)
\(=\)\(2345-1000\div\left[19-2.3^2\right]\)
\(=\)\(2345-1000\div\left[19-2.9\right]\)
\(=\)\(2345-1000\div\left[19-18\right]\)
\(=\)\(2345-1000\div1\)
\(=\)\(2345-1000\)
\(=\)\(1345\)
j) \(128-\left[68+8\left(37-35\right)^2\right]\div4\)
\(=\)\(128-\left[68+8.2^2\right]\div4\)
\(=\)\(128-\left[68+8.4\right]\div4\)
\(=\)\(128-\left[68+32\right]\div4\)
\(=\)\(128-100\div4\)
\(=\)\(128-25\)
\(=\)\(3\)
k) \(568-\left\{5\left[143-\left(4-1\right)^2\right]+10\right\}\div10\)
\(=\)\(568-\left\{5\left[143-3^2\right]+10\right\}\div10\)
\(=\)\(568-\left\{5\left[143-9\right]+10\right\}\div10\)
\(=\)\(568-\left\{5.134+10\right\}\div10\)
\(=\)\(568-\left\{670+10\right\}\div10\)
\(=\)\(568-680\div10\)
\(=\)\(568-68\)
\(=\)\(500\)
a) \(107-\left\{38+\left[7.3^2-24\div6+\left(9-7\right)^3\right]\right\}\div15\)
\(=\)\(107-\left\{38+\left[7.3^2-24\div6+2^3\right]\right\}\div15\)
\(=\)\(107-\left\{38+\left[7.9-4+8\right]\right\}\div15\)
\(=\)\(107-\left\{38+\left[63-4+8\right]\right\}\div15\)
\(=\)\(107-\left\{38+67\right\}\div15\)
\(=\)\(107-105\div15\)
\(=\)\(107-7\)
\(=\)\(7\)
b) \(307-\left[\left(180-160\right)\div2^2+9\right]\div2\)
\(=\)\(307-\left[20\div4+9\right]\div2\)
\(=\)\(307-\left[5+9\right]\div2\)
\(=\)\(307-14\div2\)
\(=\)\(307-7\)
\(=\)\(300\)
c) \(205-\left[1200-\left(4^2-2.3\right)^3\right]\div40\)
\(=\)\(205-\left[1200-\left(16-6\right)^3\right]\div40\)
\(=\)\(205-\left[1200-10^3\right]\div40\)
\(=\)\(205-\left[1200-1000\right]\div40\)
\(=\)\(205-200\div40\)
\(=\)\(205-5\)
\(=\)\(200\)
a, \(3^4\div3^2-\left[120-\left(2^6.2+5^2.2\right)\right]\)
\(=3^2-\left\{120-\text{[}2.\left(2^6+5^2\right)\text{]}\right\}\)
\(=3^2-\left(120-2\cdot89\right)\)
\(=9--58=9+58=67\)
1. \(a,3^4:3^2-\left[120-(2^6\cdot2+5^2\cdot2)\right]\)
\(=3^2-\left[120-\left\{(2^6+5^2)\cdot2\right\}\right]\)
\(=3^2-\left[120-\left\{(64+25)\cdot2\right\}\right]\)
\(=9-\left[120-89\cdot2\right]\)
\(=9-\left[120-178\right]=9-(-58)=67\)
b, Tương tự như bài a
2.a,\(4^x\cdot5+4^2\cdot2=2^3\cdot7+56\)
\(\Leftrightarrow4^x\cdot5+16\cdot2=8\cdot7+56\)
\(\Leftrightarrow4^x\cdot5+32=56+56\)
\(\Leftrightarrow4^x\cdot5+32=112\)
\(\Leftrightarrow4^x\cdot5=80\)
\(\Leftrightarrow4^x=16\Leftrightarrow4^x=4^2\Leftrightarrow x=2\)
\(b,24:(2x-1)^3-2=1\)
\(\Leftrightarrow24:(2x-1)^3=3\)
\(\Leftrightarrow(2x-1)^3=8\)
\(\Leftrightarrow(2x-1)^3=2^3\)
\(\Leftrightarrow2x-1=2\)
Làm nốt là xong thôi
a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²
2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³
A = 2A - A
= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)
= 2²⁰²³ - 2⁰
= 2²⁰²³ - 1
Vậy A = B
b) A = 2021 . 2023
= (2022 - 1).(2022 + 1)
= 2022.(2022 + 1) - 2022 - 1
= 2022² + 2022 - 2022 - 1
= 2022² - 1 < 2022²
Vậy A < B