Cho hình hộp ABCD.A’B’C’D’. Trên các cạnh AA’, BB’, CC’ lần lượt lấy ba điểm M, N, P sa...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

A B C D A' B' C' D' I J
a) Có AA' // DD' và AB//DC nên \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\).
b) Do \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\)\(\left(\beta\right)\cap\left(AA'B'B\right)=A'B'\)\(\left(\beta\right)\cap\left(CC'D'D\right)=C'D'\) nên \(A'B'\) // \(C'D'\).
Chứng minh tương tự B'C'//D'A'.
Do đó tứ giác A'B'C'D' là hình bình hành và J là trung điểm của A'C'.
Suy ra: IJ là đường trung bình của hình thang A'C'CA nên IJ // AA'.
c) Tương tự IJ là đường trung bình của hình thang B'D'DB \(IJ=\dfrac{\left(B'B+DD'\right)}{2}\).
Theo câu b IJ là đường trung bình của hình thang A'C'CA nên \(IJ=\dfrac{\left(AA'+CC'\right)}{2}\).
Suy ra: \(BB'+DD'=AA'+CC'\) hay \(DD'=a+c-b\).

31 tháng 3 2017

TenAnh1 TenAnh1 A = (-0.14, -7.4) A = (-0.14, -7.4) A = (-0.14, -7.4) B = (14.46, -7.36) B = (14.46, -7.36) B = (14.46, -7.36) C = (-3.74, -5.6) C = (-3.74, -5.6) C = (-3.74, -5.6) D = (11.62, -5.6) D = (11.62, -5.6) D = (11.62, -5.6) E = (-3.34, -5.86) E = (-3.34, -5.86) E = (-3.34, -5.86) F = (12.02, -5.86) F = (12.02, -5.86) F = (12.02, -5.86) G = (-3.7, -5.88) G = (-3.7, -5.88) G = (-3.7, -5.88) H = (11.66, -5.88) H = (11.66, -5.88) H = (11.66, -5.88)

a) Các véctơ cùng phương với là: , , , , , , .

b) Các véctơ cùng hướng với là: , , .

c) Các véctơ ngược hướng với là: , , , .

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

1 tháng 4 2017

a) () // (ABCD) => {A_{1}{B_{1}}^{}}^{} // AB => {B_{1}}^{} là trung điểm của SB. Chứng minh tương tự với các điểm còn lại

b) Áp dụng định lí Ta-lét trong không gian:
\(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}\).
Do \(A_1A_2=A_2A\) nên : \(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}=1\).
Nên \(B_1B_2=B_2B;C_1C_2=CC_2=D_1D_2=D_2D\).

c) Có hai hình chóp cụt: ABCD.{A_{1}{B_{1}{C_{1}{D_{1}; ABCD.{A_{2}{B_{2}{C_{2}{D_{2}}^{}}^{}}^{}}^{}}^{}}^{}}^{}}^{}

 

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Câu 1 : Cho hình chóp S.ABCD có đáy ABC là tam giác vuông tại B và \(SA\perp\left(ABC\right)\) , \(AB=a\sqrt{3}\) , AC = 2a . Tính khoảng cách từ điểm C đến mặt phẳng (SAB) ? A. a B. 2a C. \(a\sqrt{5}\) D. \(a\sqrt{7}\) Câu 2 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với đáy và SA = 2a . Gọi M là trung điểm SD . Tính khoảng cách d giữa...
Đọc tiếp

Câu 1 : Cho hình chóp S.ABCD có đáy ABC là tam giác vuông tại B và \(SA\perp\left(ABC\right)\) , \(AB=a\sqrt{3}\) , AC = 2a . Tính khoảng cách từ điểm C đến mặt phẳng (SAB) ?

A. a B. 2a C. \(a\sqrt{5}\) D. \(a\sqrt{7}\)

Câu 2 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với đáy và SA = 2a . Gọi M là trung điểm SD . Tính khoảng cách d giữa đường thẳng SB và mặt phẳng (ACM)

A. \(d=\frac{a}{3}\) B. \(d=\frac{2a}{3}\) C. \(d=\frac{3a}{2}\) D. d = a

Câu 3 : Cho hình chóp S.ABC có đáy là tam giác vuông tại C , AC = a , BC = \(a\sqrt{2}\) , SA vuông góc với mặt đáy và SA = a . Góc giữa SB và mặt phẳng đáy bằng

A. 900 B. 450 C. 300 D. 600

Câu 4 : Cho hàm số \(f\left(x\right)=\sqrt{x^2+3}\) . Tính giá trị của biểu thức \(S=f\left(1\right)^{ }\) + 4 f' (1)

A. S = 4 B. S = 2 C. S = 6 D. S = 8

Câu 5 : Hàm số nào trong các hàm số sau liên tục trên tập xác định R

A. \(y=\sqrt{x^2-1}\) B. \(y=\frac{1}{x}\) C. \(y=\frac{3}{x^2+2}\) D. \(y=tanx\)

Câu 6 : Gọi k1 , k2 , k3 lần lượt là hệ số góc của tiếp tuyến của đồ thị các hàm số

\(y=f\left(x\right),y=g\left(x\right),y=\frac{f\left(x\right)}{g\left(x\right)}\) tại x = 2 và thỏa mãn \(k_1=k_2=2k_3\ne0\)

A. \(f\left(2\right)< \frac{1}{2}\) B. \(f\left(2\right)\le\frac{1}{2}\) C. \(f\left(2\right)>\frac{1}{2}\) D. \(f\left(2\right)\ge\frac{1}{2}\)

giải chi tiết từng câu giúp mình với ạ

2
NV
3 tháng 7 2020

3.

\(SA\perp\left(ABC\right)\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABC)

\(AB=\sqrt{AC^2+BC^2}=a\sqrt{3}\)

\(tan\widehat{SBA}=\frac{SA}{AB}=\frac{1}{\sqrt{3}}\Rightarrow\widehat{SBA}=30^0\)

4.

\(f'\left(x\right)=\frac{\left(x^2+3\right)'}{2\sqrt{x^2+3}}=\frac{x}{\sqrt{x^2+3}}\) \(\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=2\\f'\left(1\right)=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow S=2+4.\frac{1}{2}=4\)

5.

Hàm \(y=\frac{3}{x^2+2}\) xác định và liên tục trên R

6.

\(\left\{{}\begin{matrix}k_1=f'\left(2\right)\\k_2=g'\left(2\right)\\k_3=\frac{f'\left(2\right).g\left(2\right)-g'\left(2\right).f\left(2\right)}{g^2\left(2\right)}\end{matrix}\right.\) \(\Rightarrow k_3=\frac{k_1.g\left(2\right)-k_2.f\left(2\right)}{g^2\left(2\right)}\Rightarrow\frac{1}{2}=\frac{g\left(2\right)-f\left(2\right)}{g^2\left(2\right)}\)

\(\Leftrightarrow g^2\left(2\right)=2g\left(2\right)-2f\left(2\right)\)

\(\Leftrightarrow1-2f\left(2\right)=\left[g\left(2\right)-1\right]^2\ge0\)

\(\Rightarrow2f\left(2\right)\le1\Rightarrow f\left(2\right)\le\frac{1}{2}\)

NV
3 tháng 7 2020

1.

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow d\left(C;\left(SAB\right)\right)=BC\)

\(BC=\sqrt{AC^2-AB^2}=a\)

2.

Qua S kẻ đường thẳng d song song AD

Kéo dài AM cắt d tại E \(\Rightarrow SADE\) là hình chữ nhật

\(\Rightarrow DE//SA\Rightarrow ED\perp\left(ABCD\right)\)

\(SBCE\) cũng là hcn \(\Rightarrow SB//CE\Rightarrow SB//\left(ACM\right)\Rightarrow d\left(SB;\left(ACM\right)\right)=d\left(B;\left(ACM\right)\right)\)

Gọi O là tâm đáy, BD cắt (ACM) tại O, mà \(BO=DO\)

\(\Rightarrow d\left(B;\left(ACM\right)\right)=d\left(D;\left(ACM\right)\right)\)

\(\left\{{}\begin{matrix}AC\perp BD\\AC\perp ED\end{matrix}\right.\) \(\Rightarrow AC\perp\left(BDE\right)\)

Từ D kẻ \(DH\perp OE\Rightarrow DH\perp\left(ACM\right)\Rightarrow DH=d\left(D;\left(ACM\right)\right)\)

\(BD=a\sqrt{2}\Rightarrow OD=\frac{1}{2}BD=\frac{a\sqrt{2}}{2}\) ; \(ED=SA=2a\)

\(\frac{1}{DH^2}=\frac{1}{DO^2}+\frac{1}{ED^2}=\frac{9}{4a^2}\Rightarrow DH=\frac{2a}{3}\)

26 tháng 5 2017

Lấy điểm O cố định rồi đặt \(\overrightarrow{OA_1}=\overrightarrow{a_1};\overrightarrow{OB_1}=\overrightarrow{b_1};\overrightarrow{OC_1}=\overrightarrow{c_1};\overrightarrow{OD_1}=\overrightarrow{d_1}\)

Điều kiện cần và đủ để tứ giác \(A_1B_1C_1D_1\) là hình bình hành là :

\(\overrightarrow{a_1}+\overrightarrow{c_1}=\overrightarrow{b_1}+\overrightarrow{d_1}\) (1)Vectơ trong không gian, Quan hệ vuông góc

\(\overrightarrow{a}+\overrightarrow{c}=\overrightarrow{b}+\overrightarrow{d}\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)

<=> Tứ giác ABCD là hình bình hành

Cho hai mặt phẳng \(\left(\alpha\right)\&\left(\beta\right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left(\alpha\right)\) ở A và cắt \(\left(\beta\right)\) ở B ta lấy hai điểm cố định \(S_1,S_2\) không thuộc \(\left(\alpha\right)\), \(\left(\beta\right)\). Gọi M là một điểm di động trên \(\left(\beta\right)\). Giả sử các đường thẳng \(MS_1,MS_2\) cắt \(\left(\alpha\right)\) lần lượt...
Đọc tiếp

Cho hai mặt phẳng \(\left(\alpha\right)\&\left(\beta\right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left(\alpha\right)\) ở A và cắt \(\left(\beta\right)\) ở B ta lấy hai điểm cố định \(S_1,S_2\) không thuộc \(\left(\alpha\right)\)\(\left(\beta\right)\). Gọi M là một điểm di động trên \(\left(\beta\right)\). Giả sử các đường thẳng \(MS_1,MS_2\) cắt \(\left(\alpha\right)\) lần lượt tại \(M_1,M_2\)

a) Chứng minh rằng \(M_1M_2\) luon luôn đi qua một điểm cố định

b) Giả sử đường thẳng \(M_1M_2\) cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng 

c) Gọi b là một đường thẳng thuộc mặt phẳng \(\left(\beta\right)\) nhưng không đi qua điểm B và cắt m tại I. Chứng minh rằng khi M di động trên b thì các điểm \(M_1\) và \(M_2\) di động trên hai đường thẳng cố định thuộc mặt phẳng \(\left(\alpha\right)\)

1
25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song