Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=3+3^2+3^3+...+3^{120}\)
\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)
\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)
Suy ra B chia hết cho 3 (đpcm)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)
\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)
\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)
Suy ra B chia hết cho 4 (đpcm)
c) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)
\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)
\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)
Suy ra B chia hết cho 13 (đpcm)
(-4;-3;-2;-1;0;1;2;3;4)
Ko có dấu ngoặc nhọn nên mik xài ngoặc tròn nha
\(\frac{1}{-4}-\frac{4}{-3}+\frac{1}{-3}\left(\frac{50}{100}-\frac{5}{2}\right)=-\frac{1}{4}+\frac{4}{3}-\frac{1}{3}\left(\frac{1}{2}-\frac{5}{2}\right)=-\frac{1}{4}+\frac{4}{3}-\frac{1}{3}\left(-\frac{4}{2}\right)\)
\(=-\frac{1}{4}+\frac{4}{3}+\frac{2}{3}=-\frac{1}{4}+\frac{6}{3}=-\frac{1}{4}+2=-\frac{1}{4}+\frac{8}{4}=\frac{7}{4}\)
\(-\frac{14}{10}.\frac{15}{-49}-\frac{6}{3}:\frac{13}{5}=\frac{7.2}{2.5}.\frac{3.5}{7.7}-2.\frac{5}{13}=\frac{3}{7}-\frac{10}{13}=\frac{39}{91}-\frac{70}{91}=-\frac{31}{91}\)
3)
A B I K
a) Vì (A; R=3 cm) cắt AB tại K
=> K nằm trên đường tròn (A; 3 cm)
=> AK=3 cm
Vì (B; 2 cm) cắt AB=I
=> I nằm trên đường tròn (B; 2 cm)
=> BI=2cm
b) Có: AI=AB--BI=4-2=2cm
IK=AK-AI=3-2=1 cm
=>AI>IK
c) KB=BI-IK=2-1=1 cm
=> KB=IK
I, K, B thẳng hàng
=> K là trung điểm IB
\(\frac{1}{-4}-\frac{4}{-3}+\frac{1}{-3}.\left(50\%-1\frac{3}{2}\right)\)
=\(\frac{-1}{4}-\frac{-4}{3}+\frac{-1}{3}.\left(50\%-\frac{5}{2}\right)\)
=\(\frac{-1}{4}-\frac{-4}{3}+\frac{-1}{3}.\left(-2\right)\)
=\(\frac{-1}{4}-\frac{-4}{3}+\frac{2}{3}\)
=\(\frac{-1}{4}+\frac{4}{3}+\frac{2}{3}\)
=\(\frac{-1}{4}+\left(\frac{4}{3}+\frac{2}{3}\right)\)
=\(\frac{-1}{4}+2\)
=\(\frac{7}{4}=1,75\)
\(-1,4.\frac{15}{-49}-\left(\frac{2}{3}+\frac{4}{3}\right):2\frac{3}{5}\)
=\(-1,4.\frac{15}{-49}-2:2\frac{3}{5}\)
=\(\frac{-1}{4}.\frac{15}{-49}-\frac{2}{1}:\frac{13}{5}\)
=\(\frac{15}{196}-\frac{10}{13}\)
=\(\frac{-1765}{2548}\)
MIK KO VẼ ĐC TRÊN NÀY, SORRY.
a) KA= bán kính đường tròn tâm A = 3cm
IB= bán kính đường tròn tâm B= 2cm
b) AI= AB- bán kính đường tròn tâm B
= 4cm-2cm
=2cm
IK= AB-AI-KB
= 4cm- 2cm- (AB-AK)
= 4cm-2cm-(4cm-3cm)
= 4cm-2cm-1cm
= 1cm
=> AI>IK
c) KB=AB- AK
= 4cm-3cm
=1cm
Vì K nằm giữa I và B và IK=KB=1cm
=> K là trung điểm của đoạn thẳng IB
k cho mik nha
a: \(=\dfrac{1}{3}-\dfrac{37}{100}+\dfrac{1}{8}-\dfrac{32}{25}+\dfrac{-5}{2}+\dfrac{3}{2}\)
\(=\dfrac{1}{3}+\dfrac{1}{8}-1-\dfrac{37}{100}-\dfrac{128}{100}\)
\(=\dfrac{8+3-24}{24}-\dfrac{165}{100}\)
\(=\dfrac{-263}{120}\)
b: \(=\dfrac{5}{22}+\dfrac{3}{13}-\dfrac{13}{8}-\dfrac{2}{11}+\dfrac{3}{2}\)
\(=\dfrac{5}{22}-\dfrac{4}{22}-\dfrac{13}{8}+\dfrac{12}{8}+\dfrac{3}{13}\)
\(=\dfrac{1}{22}-\dfrac{1}{8}+\dfrac{3}{13}=\dfrac{173}{1144}\)
a: \(=\dfrac{1}{3}-\dfrac{37}{100}+\dfrac{1}{8}-\dfrac{32}{25}-\dfrac{5}{2}+\dfrac{3}{2}\)
\(=\dfrac{11}{24}+\left(-\dfrac{37}{100}+\dfrac{1}{8}-1\right)\)
\(=\dfrac{11}{24}-\dfrac{249}{200}=-\dfrac{59}{75}\)
b: \(=\dfrac{5}{22}+\dfrac{3}{13}-\dfrac{13}{8}-\dfrac{2}{11}+\dfrac{3}{2}\)
\(=\dfrac{5}{22}-\dfrac{4}{22}+\dfrac{3}{13}-\dfrac{13}{8}+\dfrac{12}{8}\)
\(=\dfrac{1}{22}+\dfrac{3}{13}-\dfrac{1}{8}=\dfrac{173}{1144}\)
\(6n+9⋮4n-1\)
\(\Rightarrow2.\left(6n+9\right)⋮4n-1\)
\(\Rightarrow12n+18⋮4n-1\)
\(\Rightarrow12n-3+21⋮4n-1\)
\(\Rightarrow3.\left(4n-1\right)+21⋮4n-1\)
Vì \(3.\left(4n-1\right)⋮4n-1\Rightarrow21⋮4n-1\)
Mà 4n - 1 chia 4 dư 3; \(4n-1\ge-1\) do \(n\in N\)
\(\Rightarrow4n-1\in\left\{-1;3;7\right\}\)
\(\Rightarrow4n\in\left\{0;4;8\right\}\)
\(\Rightarrow n\in\left\{0;1;2\right\}\)
F là trung điểm của đoạn thẳng MN vì F nằm giữa hai điểm M và N, đồng thời MF = NF = 3cm.