\(|\)2X-3\(|\)lớn hơn X+1

giải bất phương trình trên

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2020

\(\left|2x-3\right|>x+1\)

| 2x - 3 | = 2x - 3\(\ge\) khi 2x - 3 \(\ge\)0 hay x \(\ge\)3/2

| 2x - 3 | = -(2x - 3) = -2x + 3 khi 2x - 3 < 0 hay x < 3/2

Quy về giải hai bất phương trình :

* 2x - 3 > x + 1 ( x \(\ge\)3/2 )

<=> 2x - x > 1 + 3

<=> x > 4 ( tmđk )

* -2x + 3 > x + 1 ( x < 3/2 )

<=> -2x - x > 1 - 3

<=> -3x > -2 

<=> -3x : ( -3 ) < -2 : ( -3 ) 

<=> x < 2/3 ( tmđk ) 

Vậy nghiệm của bất phương trình là x > 4 và x < 2/3 

29 tháng 12 2015
  
  
  

 

30 tháng 12 2015

1488

27 tháng 2 2016

\(\sqrt{2x^2+3}\)  <   \(x-a\) (1)

\(\Leftrightarrow\) \(\begin{cases}x-a\ge0\\2x^2+3\ge0\\2x^2+3<\left(x-a\right)^2\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}x\in\left(a;+\infty\right)\\f\left(x\right):=x^2+2ax+3-a^2<0\end{cases}\)  (a)

\(x\in\left(a;+\infty\right)\) := (*)

Hiển nhiên T(1) = T(a) \(\cap\) (*). Xét bất phương trình (a) có

\(\Delta=2a^2-3\) ; \(\frac{s}{2}-a=-2a\) và \(1.f\left(a\right)=2a^2+3>0\) với mọi a \(\in R\)

- Nếu \(\left|a\right|\le\frac{\sqrt{6}}{2}\) thì \(\Delta\le0\) suy ra (a) vô nghiệm nên (1) vô nghiệm

- Nếu \(\left|a\right|>\frac{\sqrt{6}}{2}\) thì \(\Delta>0\)  nên bất phương trình (a) có tập nghiệm

  T(a) = (\(x_1;x_2\)) với \(x_1=-a-\sqrt{2a^2-3}\)\(x_2=-a+\sqrt{2a^2-3}\)

- Nếu \(\left|a\right|>\frac{\sqrt{6}}{2}\) thì \(\frac{s}{2}-a>0\) nên ta có a<\(x_1\)\(\le\) \(x_2\)

Khi đó T(1) = T(a) \(\cap\) (*)=\(\varnothing\) hay (1) vô nghiệm

- Nếu \(\left|a\right|<\frac{\sqrt{6}}{2}\) thì \(\frac{s}{2}-a>0\) nên ta có a<\(x_1\)\(\le\) \(x_2\)

Khi đó T(1) = T(a) \(\cap\) (*)=T(a). Từ đó kết luận :

   + Với \(a\ge-\frac{\sqrt{6}}{2}\)  thì bất phương trình đã cho vô nghiệm

   + Với \(a<-\frac{\sqrt{6}}{2}\)  thì bất phương trình đã cho có nghiệm

\(-a-\sqrt{2a^2-3}\) <x<\(-a+\sqrt{2a^2-3}\)

 

 

 

 

4 tháng 3 2016

\(\sqrt{x^2-2x}\ge x+2\)  (1)

\(\Leftrightarrow\)  \(\begin{cases}x-2<0\\x^2-2x\ge0\end{cases}\) hoặc \(\begin{cases}x+2\ge0\\x^2-2x\ge\left(x+2\right)^2\end{cases}\)

\(\Leftrightarrow\)  \(\begin{cases}x<-2\\x\le0\end{cases}\) hoặc \(\begin{cases}x<-2\\2\le x\end{cases}\)

hoặc \(\begin{cases}-2\le x\\x\le-\frac{2}{3}\end{cases}\)

\(\Leftrightarrow\)  \(x<-2\)   hoặc \(2\le x\le-\frac{2}{3}\)

\(\Leftrightarrow\) \(x\le-\frac{2}{3}\)

Vậy bất phương trình đã cho có tập nghiệm T(1) = (\(-\infty\)\(-\frac{2}{3}\))

 

15 tháng 1 2016

nhi thức là gì v?nhonhung

16 tháng 1 2016

ko bieets