a) Vẽ các đường thẳng (d1) y=x-2 và (d2) y=-3
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

a) Đồ thị được vẽ như hình bên.

b) Giao của đường thẳng y = -x + 2 với Ox là B(2; 0).

Vì hai đường thẳng y = 0,5x + 2 và y = -x + 2 đều có tung độ gốc là 2 nên giao của chúng là C(0; 2).

Ta có tg A = 0,5. Suy ra ≈ 26034’.

Vì ∆BOC là tam giác vuông cân nên =450 .

Suy ra ≈ 1800 – (26034’ + 450) = 108026’.

c) Ta có AB = 6 (cm), AC = = 2√5 (cm), BC = 2√2 (cm).

Do đó chu vi của ∆ABC là 6 + 2√5 + 2√2 (cm).

Diện tích của ∆ABC là: AB . OC = . 6 . 2 = 6 (cm2).

23 tháng 4 2017

Bài giải:

a) Đồ thị được vẽ như hình bên.

b) Giao của đường thẳng y = -x + 2 với Ox là B(2; 0).

Vì hai đường thẳng y = 0,5x + 2 và y = -x + 2 đều có tung độ gốc là 2 nên giao của chúng là C(0; 2).

Ta có tg A = 0,5. Suy ra ≈ 26034’.

Vì ∆BOC là tam giác vuông cân nên =450 .

Suy ra ≈ 1800 – (26034’ + 450) = 108026’.

c) Ta có AB = 6 (cm), AC = = 2√5 (cm), BC = 2√2 (cm).

Do đó chu vi của ∆ABC là 6 + 2√5 + 2√2 (cm).

Diện tích của ∆ABC là: AB . OC = . 6 . 2 = 6 (cm2).


13 tháng 11 2021

a) (d1): y = (m+2)x - m + 1 có hệ số a1 = m+2, b1 = -m +1

(d2): y = (2m-5)x + m có hệ số a2 = 2m - 5, b2 = m

Vậy khi m = 7 thì (d1) song song với (d2)

Bài 2: Cho đường thẳng (AB): y = -1/3x + 2/3; (BC): y = 5x+1; (CA): y = 3x. Xác định tọa độ ba đỉnh của tam giác ABC

Hướng dẫn giải

Điểm B là giao điểm của (AB) và (BC):

Phương trình hoành độ giao điểm B:

Điểm A là giao điểm của (AB) và (AC) nên:

Phương trình hoành độ giao điểm A:

-1/3x + 2/3 = 3x

⇔ 3x + 1/3x = 2/3

⇔ x.10/3 = 2/3

⇔ x = 1/5

=> y = 3.1/5 = 3/5

Vậy A(1/5;3/5)

Điểm C là giao điểm của (BC) và (AC) nên:

Phương trình hoành độ giao điểm C:

5x + 1 = 3x

⇔ 2x = -1

⇔ x = -1/2

> y = 3.(-1/2) = -3/2

Vậy C(-1/2;-3/2)

23 tháng 4 2017

Bài giải:

a) Xem hình bên

b) A(-1; 0), B(3; 0), C(1; 2).

c) Chu vi ∆ABC bằng 4(1 + √2).

Diện tích ∆ABC bằng 4cm2 .

27 tháng 7 2021

\(T=x^4+y^4+z^4\)

áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)

\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)

\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)

dấu "=" xảy rakhi và chỉ khi

\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)

vậy dấu "=" có xảy ra

\(< =>MIN:T=\frac{4}{3}\)

27 tháng 7 2021

sửa dòng 3 dưới lên 

\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)

Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)

11 tháng 9 2020

Hai đường thẳng làm sao ?

11 tháng 9 2020

Vẽ (D1) và (D2) trên cùng hệ trục tọa độ.