K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

\(A=1+4+4^2+...+4^{90}\)

\(4A=4+4^2+4^3+...+4^{90}+4^{91}\)

\(4A-A=\left(4+4^2+4^3+...+4^{91}\right)-\left(1+4+4^2+...+4^{90}\right)\)

\(3A=4+4^2+4^3+...4^{91}-1-4-4^2-...-4^{90}\)

\(3A=4^{91}-1\)

\(A=\frac{4^{91}-1}{3}\)

t i c k nha ^^

5 tháng 8 2017

4A= 4+42+43+....+491

4a-4=(4+42+43+...+491)-(1+4+42+...+490)

3a=491-1

a=(491-1)/3

17 tháng 2 2019

a, \(A=3a.2.b-a.432b-4ab\)

\(=6ab-432ab-4ab=-430ab\)

b, \(A=-430ab=\left(-430\right).\frac{1}{229}.\frac{1}{433}=\frac{-430}{229.433}\)

18 tháng 6 2019

#)Giải :

a) \(A=\frac{4^5.9^4-2^6.6^9}{2^{10}.3^8+6^8.20}=\frac{2^{10}.3^8-2^{10}.3^8.3}{2^{10}.3^8+2^8.3^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^8.3}{2^{10}.3^8+2^{10}.3^8.5}=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=-\frac{1}{3}\)

\(a,A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=\frac{-1}{3}\)

Học tốt!!!!!!!!!!!!!

15 tháng 8 2019

\(A=49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)

\(A=49\frac{8}{23}-5\frac{7}{32}+14\frac{8}{23}\)

\(A= \left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}\)

\(A=\left[\left(49-14\right)-\left(\frac{8}{23}-\frac{8}{23}\right)\right]-5\frac{7}{32}\)

\(A=\left[35-0\right]-5\frac{7}{32}\)

\(A=35-5\frac{7}{32}\)

\(A=\frac{953}{32}\)

\(B=71\frac{38}{45}-\left(43\frac{38}{45}-1\frac{17}{57}\right)\)

\(B=71\frac{38}{45}-\frac{36377}{855}\)

\(B=\frac{1670}{57}\)

\(C=\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right):\frac{4}{5}\)

\(C=\left[\left(19\frac{5}{8}-13\frac{1}{4}\right):\frac{7}{12}\right]:\frac{4}{5}\)

\(C=\left[\frac{51}{8}:\frac{7}{12}\right]:\frac{4}{5}\)

\(C=\frac{153}{14}:\frac{4}{5}\)

\(C=\frac{765}{56}\)

\(D=\left[\left(\frac{10}{15}-\frac{2}{3}\right):\frac{1}{7}\right]\cdot0,15-\frac{1}{4}\)

\(D=\left[0:\frac{1}{7}\right]\cdot\frac{3}{20}-\frac{1}{4}\)

\(D=0\cdot\frac{3}{20}-\frac{1}{4}\)

\(D=0-\frac{1}{4}\)

\(D=-\frac{1}{4}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot2\frac{1}{2}-\left[\left(\frac{1}{2}+\frac{1}{3}\right):\frac{53}{90}\right]:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\left[\frac{5}{6}:\frac{53}{90}\right]:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\frac{75}{53}:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{14}{9}-\frac{3}{2}\)

\(\)\(E=\frac{22}{45}\)

CHUC BAN HOC TOT >.<

14 tháng 3 2018

a ) A = 1/15 . 75/ x + 2 + 3/8 . 64/ 3x + 6

     A = 1.75 / 15.( x + 2 ) + 3.64/8.( 3x + 6 )

     A = 1.5/1.( x + 2 ) + 1.8/1.( x + 2 )

b ) A = 1.5/1.( x + 2 ) + 1.8/1.( x + 2 )

     A = 5/ x+ 2 + 8/ x + 2

     A = 5 + 8 / x + 2

     A = 13/ x + 2 

Thay x = 37

     A = 13 / 37 + 2

     A = 13 / 39

     A = 1/3 

Câu 2 : 

B = 1 + 3 + 3^2 + 3^3 + ... + 3^199 

3B = 3 + 3^2 + 3^3 + 3^4 + ... + 3^200

3B - B = ( 3 + 3^2 + 3^3 + 3^4 + ... 3^200 ) - ( 1 + 3 + 3^2 + 3^3 + ... + 3^199 )

2B = 3^200 - 1

B = 3^200 - 1 / 2 

26 tháng 1 2017

-b-b+a-c-a+b-c-c+a

= (-b+b-b )+(a-a+a)+(-c-c-c)

= -b + a + (-3c)

CHÚC BẠN NĂM MỚI ZUI ZẺ

HAPPY NEW YEAR ^_^

5 tháng 3 2017

\(giải:\)\(a,\)

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)\(=\frac{a^3+a^2+a^2-1}{a^3+2a^2+2a+1}\)

                                                   \(=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)

                                                    \(=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

                                                     \(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}\)

                                                      \(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

                                                       \(=\frac{a^2+a-1}{a^2+a+1}\)

\(b,\)gọi d là \(ƯCLN\left(a^2+a-1,a^2+a+1\right)\)

\(\Rightarrow a^2+a-1⋮d\) và \(a^2+a+1⋮d\)

\(\Rightarrow\left(a^2+a-1\right)-\left(a^2+a+1\right)⋮d\)

\(\Rightarrow-2⋮d\)hay\(2⋮d\)

mà \(a^2+a+1=\left(a^2+a\right)+1=a\left(a+1\right)+1\)

mà a(a+1) là tích của hai số nguyên liên tiếp nên chia hết cho 2 => a(a+1) là một số chẵn => a(a+1)+1 là một số lẻ

=> a(a+1)+1 không chia hết cho 2 hay \(a^2+a+1\)ko chia hết cho 2

\(\RightarrowƯCLN\left(a^2+a-1,a^2+a+1\right)=1\)

\(\Rightarrow\frac{a^2+a-1}{a^2+a+1}\)là một phân số tối giản hay A là phân số tối giải(đpcm)

5 tháng 3 2017

a ) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b ) Gọi d là ƯC(a2 + a - 1; a2 + 1 + 1) Nên ta có :

a2 + a - 1 ⋮ d và a2 + a + 1 ⋮ d

=> (a2 + a + 1) - (a2 + a - 1) ⋮ d

=> 2 ⋮ d => d = { 1; 2 }

Xét a2 + a + 1 = a(a + 1) + 1 . Vì a(a + 1) là 2 số nguyên liên tiếp nên a(a + 1) ⋮ 2

=> a(a + 1) + 1 không chia hết cho 2

=> ƯC(a2 + a - 1; a2 + 1 + 1) = 1

=> \(\frac{a^2+a-1}{a^2+a+1}\) là phân số tối giản 

Hay \(A\)là phân số tối giản (đpcm)