Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HD:
FexOy + yCO \(\rightarrow\) xFe + yCO2
Trong một phản ứng hóa học, các chất tham gia và các chất sản phẩm phải chứa cùng số nguyên tố tạo ra chất.
TH1: Cả 2 muối \(NaX\) và \(NaY\) đều pứ vs \(\text{AgNO3}\)
\(NaZ\) + \(AgNO_3\) \(\rightarrow\) \(NaNO_3\) + \(AgZ\)
TH2: 2 muối của X và Y lần lượt là \(NaF\) và \(NaCl\)
Mol \(AgCl\) =8,61/143,5 = 0,06mol
0,06<= 0,06
m\(NaCl\) = 0,06.58,5=3,51g
%m\(NaF\) = 2,52/6,03 .100% = 41,79%
Do AgF tan, khác các muối còn lại nên chia thành 2 trường hợp:
TH1: Hai muối ban đầu là NaF và NaCl —> nNaCl = nAgCl = 0,06 —> %NaF = 41,79%
TH2: Cả 2 muối đều tạo kết tủa:
m tăng = n muối (108 – 23) = 8,61 – 6,03 —> n muối = 0,03 —> M = 198,6 —> Halogen = M – 23 = 175,6: Vô nghiệm
a) Khối lượng mol của K2CO3 :
MK2CO3 = 39.2 + 12 + 16.3 = 138 (g/mol)
b) nK = 2 mol
nC = 1 mol
nO = 3 mol
Khối lượng của mỗi nguyên tố có trong 1 mol hợp chất là :
mK = 39.2 = 78 (g)
mC = 12.1 = 12 (g)
mO = 16.3 = 48 (g)
Thành phần phần trăm theo khối lượng của mỗi nguyên tố trong hợp chất :
\(\%m_K=\frac{m_K}{M_{K2CO3}}.100\%=\frac{78}{138}.100\%=56,5\%\)
\(\%m_C=\frac{m_C}{M_{K2CO3}}.100\%=\frac{12}{138}.100\%=8,7\%\)
\(\%m_O=\frac{m_O}{M_{K2CO3}}.100\%=\frac{48}{138}.100\%=34,8\%\)
a) khối lượng mol của chất đã cho là :
M K2CO3 = \(39\cdot2+12+16\cdot3\)= 138 g/mol ( đây là của 1 mol K2CO3 nhé)
b)
%m K = 39*2/138*100% ~~ 56%
%m C = 12/138*100% ~~ 8%
%m O= 100%-56%-8% ~~ 36%
RH4 => R có hóa trị IV
Hợp chất với oxi có hóa trị coa nhất là IV
=> RO2
RO2 --------> 2O
R+32.......... 32
100............. 53.3
=> 53.3(R+32) = 3200
=> R = 28 (Si)
Hợp chất khí với hiđro của một nguyên tố là RH4, theo bảng tuần hoàn suy ra công thức oxit cao nhất của R làRO2, trong phân tử RO2, có 53,3% oxi về khối lượng nên R có 100 - 53,3 = 46,7% về khối lượng
Trong phân tử RO2 có: 53,33% O là 32u
46,7% R là yu
Giải ra ta được y ≈ 28. Nguyên tử khối là R = 28.
Vậy R là Si. Công thức phân tử là SiH4 và SiO2
phương trình dạng toán tử : \(\widehat{H}\)\(\Psi\) = E\(\Psi\)
Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)
thay vào từng bài cụ thể ta có :
a.sin(x+y+z)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)
=\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)
=\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)
= -3.sin(x+y+z)
\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.
b.cos(xy+yz+zx)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)
=\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)
=\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)
=- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))
=-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)
\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.
c.exp(x2+y2+z2)
quá khủng
1. axetilen( ankin), benzen( hidrocacbon mạch vòng), ruou etylic ( ancol), axit axetic( axit cacboxylic), glucozo(cacbohidrat), etyl axetat( este), etilen( anken)
2.
a, qùy tím, nước vôi trong, dd brom
b, quỳ tím, nước vôi trong, và bạc
c,quỳ tím, nước vôi trong, cuso4 khan, kmno4
d,quỳ tím, brom, cuo
e, brom,quỳ tím,na
g, Cu(OH)2, đốt.
Đáp án : C
Chu kỳ 2 => e cuối điền vào lớp 2
Nhóm VA => tổng e lớp ngoài cùng là 5
=> 2s22p3
Cấu hình e đầy đủ : 1s22s22p3
=> Tổng hạt mang điện = p + e = 14