Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{102}\) (đpcm)
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{199}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+..+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{101}+...+\dfrac{1}{199}+\dfrac{1}{200}\)
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{175}\right)+\left(\frac{1}{176}+\frac{1}{177}+...+\frac{1}{200}\right)\)
\(>50.\frac{1}{150}+25.\frac{1}{175}+25.\frac{1}{200}\)
\(>\frac{1}{3}+\frac{1}{7}+\frac{1}{8}>\frac{1}{2}+\frac{1}{6}+\frac{1}{8}=\frac{19}{24}>\frac{15}{24}=\frac{5}{8}\left(đpcm\right)\)
\(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+....+\frac{1}{200}\right)\)
\(>\left(\frac{1}{150}+\frac{1}{150}+....+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+.....+\frac{1}{200}\right)=\frac{50}{150}+\frac{50}{200}=\frac{7}{12}\)
Tham khảo ở link này bạn nhé :
https://olm.vn/hoi-dap/detail/5631756599.html
~ Study well ~
Biến đổi vế trái ta có :
\(VT=\frac{1}{1}+\frac{1}{3}+...+\frac{1}{199}+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)-\) \(2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}+...+\frac{1}{200}-\) \(1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\) \(=VP\RightarrowĐPCM\)