Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
△OAB ∼ △OA'B' (g-g) \(=>\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=>\dfrac{d}{d'}=\dfrac{h}{h'}\left(1\right)\)
△FOI ∼ △FA'B' (g-g) \(=>\dfrac{OF}{FA'}=\dfrac{OI}{A'B'}\)
mà FA' = OA' - OF; OI = AB
\(=>\dfrac{OF}{OA'-OF}=\dfrac{AB}{A'B'}=>\dfrac{f}{d'-f}=\dfrac{h}{h'}\left(2\right)\)
từ (1)(2) \(=>\dfrac{d}{d'}=\dfrac{f}{d'-f}=>dd'-df=d'f\)
\(=>dd'-d'f=df=>d'\cdot\left(d-f\right)=df\\ =>d'=\dfrac{df}{d-f}=\dfrac{24\cdot16}{24-16}=48\left(cm\right)\left(3\right)\)
thay (3) vào (1) ta được: \(\dfrac{24}{48}=\dfrac{2}{h'}\)
\(=>h'=\dfrac{2\cdot48}{24}=4\left(cm\right)\)
vậy khoảng cách từ ảnh đến thấu kính là 48 cm; chiều cao ảnh là 4cm
a/ bạn tự làm nhé
b/ Ta có: d < f: ảnh ảo, cùng chiều, lớn hơn vật
c/ Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\)
\(\Leftrightarrow\dfrac{1}{16}=\dfrac{1}{12}+\dfrac{1}{d'}\)
\(\Leftrightarrow d'=-48\left(cm\right)\)
d) Chiều cao của ảnh
Ta có: \(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow h'=\dfrac{h.d'}{d}=\dfrac{2.-48}{12}=-8\left(cm\right)\)