Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) ta có : \(\left\{{}\begin{matrix}v_0+a\left(3-\frac{1}{2}\right)=8\\v_0+a\left(6-\frac{1}{2}\right)=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}v_0+\frac{5}{2}a=8\\v_0+\frac{11}{2}a=2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}-3a=6\\v_0+\frac{5}{2}a=8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\left(m/s^2\right)\\v_0=13m/s\end{matrix}\right.\)
=> Chọn D.
Bài1:
\(S_1=v_0.2-\frac{1}{2}.a2^2=20\)
=> \(2v_0-2a=60\)(1)
\(v^2-v_0^2=2as\Rightarrow0^2-v_0^2=2a.20\Rightarrow v_0=\sqrt{40a}\)(2)
Từ (1) và (2) => \(2.\sqrt{40a}-2a=60\)
=> \(2\left(\sqrt{40a}-a\right)=60\)
<=> \(\sqrt{40a}-a=30\)
<=> \(\sqrt{40a}=30+a\Leftrightarrow40a=a^2+60a+900\)
=> \(a^2+20a+900=0\) (pt vô nghiệm)
a) PT x1 có dạng tổng quát là: \(x=x_0+v_0t+\dfrac{1}{2}at^2\) nên chuyển động của vật 1 là chuyển động thẳng biến đổi đều.
Căn cứ theo phương trình ta có:
+ \(x_0=0\)
+ \(v_0=-8(m/s)\)
+ \(a=2(m/s^2)\)
Do \(v_0<0\) nên t = 0 thì vật chuyển động ngược chiều dương của trục toạ độ.
Do \(v_0\) ngược dấu với \(a\) nên chuyển động đang là chuyển động chậm dần đều.
PT x2 có dạng tổng quát: \(x=x_0+v.t\) nên chuyển động của vật 1 là chuyển động thẳng đều, căn cứ theo phương trình ta suy ra được:
+ \(x_{02}=12(m)\)
+ \(v_2=5(m/s)\)
Do \(v_2>0\) nên vật 2 đang chuyển động cùng chiều dương với trục toạ độ.
b) Khoảng cách 2 vật là:
\(\Delta x = |x_1-x_2|=|t_2-13t-12|\)
\(t=2(s)\) \(\Rightarrow \Delta x = |2-13.2-12|=36(m)\)
c) Pt vận tốc của vật 2 là:
\(v=v_0+a.t=-8+2.t\) (m/s)
Vật 2 đổi chiều chuyển động khi \(v=0\Rightarrow -8+2.t=0\Rightarrow t = 4(s)\)
Ban đầu, t= 0 thì vị trí vật 2 là: \(x_2=12+5.0=12(m)\)
Khi t = 4s thì vị trí vật 2 là: \(x_2'=12+5.4=32(m)\)
Quãng đường vật 2 đi được là: \(S_2=x_2'-x_2=43-12=20(m)\)
d) Lúc t = 3s, vận tốc vật 1 là: \(v_1=-8+2.3=-2(m/s)\)
Lúc này vật 1 có vận tốc là 2m/s và đang chuyển động chậm dần đều ngược chiều dương của trục toạ độ. Còn vật 2 vẫn đang chuyển động đều với vận tốc là 5m/s theo chiều dương trục toạ độ.
e) Lúc t = 6s, vận tốc vật 1 là: \(v_1=-8+2.6=4(m/s)\)
Lúc này vật 1 có vận tốc là 4m/s và đang chuyển động nhanh dần đều cùng chiều dương của trục toạ độ. Còn vật 2 vẫn đang chuyển động đều với vận tốc là 5m/s theo chiều dương trục toạ độ.
f) Quãng đường vật 1 đi được từ 2s đến 5s là:
\(|(5^2-8.5)-(2^2-8.2)|=3(m)\)
a) cơ năng tại vị trí ban đầu của vật
\(W_A=W_{đ_A}+W_{t_A}=\dfrac{1}{2}.m.v_0^2+m.g.h\)=300J
gọi vị trí mà vật đạt độ cao cực đại là B
bảo toàn cơ năng: \(W_A=W_B\)
để \(W_{t_{B_{max}}}\) thì \(W_{đ_B}=0\)
\(\Leftrightarrow300=m.g.h_{max}+0\)
\(\Leftrightarrow h_{max}\)=15m
b) gọi vị trí mà động năng bằng 1/3 lần thế năng là C \(\left(W_{đ_C}=\dfrac{1}{3}W_{t_C}\right)\)hay\(\left(3W_{đ_C}=W_{t_C}\right)\)
bảo toàn cơ năng: \(W_A=W_C\)
\(\Leftrightarrow300=4.W_{đ_C}\)
\(\Leftrightarrow v=\)\(5\sqrt{3}\)m/s
c) s=10cm=0,1m
vị trí tại mặt đất là O (v1 là vận tốc khi chạm đất)
\(W_A=W_O\Leftrightarrow300=\dfrac{1}{2}.m.v_1^2+0\)
\(\Rightarrow v_1=\)\(10\sqrt{3}\)m/s
lực cản của mặt đất tác dụng vào vật làm vật giảm vận tốc (v2=0)
\(A_{F_C}=\dfrac{1}{2}.m.\left(v_2^2-v_1^2\right)\)
\(\Leftrightarrow F_C.s=-100\)
\(\Rightarrow F_C=-1000N\)
lực cản ngược chiều chuyển động
Chọn C.
Vì t = 0 thì vo = 10 m/s > 0, tức là chiều dương của trục tọa độ được chọn cùng chiều chuyển động của thang máy này.
Đối chiếu v = (10 + 2t) (m/s) với công thức v = v0 + at suy ra: v 0 = + 10 ( m / s ) a = + 2 ( m / s 2 )
Từ: s = v 0 t + 0 , 5 a t 2 = 10 . 10 + 0 , 5 . 2 . 10 2 = 200 ( m )