Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>y=(m+1)x-m-1 và x+(m^2-1)x-m^2+1=2
=>x=2-1+m^2/m^2 và y=(m+1)x-m-1
=>x=(m^2+1)/m^2 và y=(m^3+m^2+m+1-m^3-m^2)/m^2=(m+1)/m^2
x+y=(m^2+m+2)/m^2
Để x+y min thì m^2+m+2 min
=>m^2+m+1/4+7/4 min
=>(m+1/2)^2+7/4min
=>m=-1/2
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
Với x = y = 2 , có x +y = 4 (*)
Với x+ y = \(\frac{1}{m}+\frac{1}{m}+1=\frac{2}{m}+1\)
BT nhỏ nhất khi \(\frac{2}{m}\) nhỏ nhất
=> m = 2
=> x + y= 1 +1 =2 (**)
Kết hợp (*) và (**) có x+y =2 là GTNN , khi m=2
Hệ có nghiệm duy nhất \(\Leftrightarrow\left(a+1\right)\left(a-1\right)\ne-1\Leftrightarrow a^2\ne0\) hay a ≠ 0
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}a\left(x-y\right)=a-3\\x+\left(a-1\right)y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\left(a-3\right)}{a}+y\\\left(\frac{\left(a-3\right)}{a}+y\right)+\left(a-1\right)y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\left(a-3\right)}{a}+y\\\frac{\left(a-3\right)}{a}+ay=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\left(a-3\right)}{a}+\frac{a+3}{a^2}\\y=\frac{a+3}{a^2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{a^2-2a+3}{a^2}\\y=\frac{a+3}{a^2}\end{matrix}\right.\)
=> x+y=\(\frac{a^2-a+6}{a^2}=1-\frac{1}{a}+6.\frac{1}{a^2}\)
Đặt \(\frac{1}{a}=t\)
=> 6t2-t+1=\(6\left(t-\frac{1}{12}\right)^2+\frac{23}{24}\ge\frac{23}{24}\)
Dấu bằng xảy ra khi và chỉ khi \(t-\frac{1}{12}=0\Leftrightarrow t=\frac{1}{12}\Leftrightarrow a=12\)