Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(2x^2+x-1\right)-\left(x^2+5x-1\right)\)
\(\Leftrightarrow A=2x^2+x-1-x^2-5x+1\)
\(\Leftrightarrow A=x^2-4x\)
Tại x=-2, ta có :
\(\Leftrightarrow A=\left(-2\right)^2-4\times\left(-2\right)\)
\(\Leftrightarrow A=12\)
b) \(B=-x^4+3x^2-x^3+3-2x-x^2+x^4+x^3-2x^2\)
\(\Leftrightarrow B=-2x+3\)
Với \(x=\dfrac{3}{2}\), ta có :
\(B=-2\times\dfrac{3}{2}+3\)
\(\Leftrightarrow B=0\)
a) \(2x^2-8x\)
* Tại x = 1 :
\(2.1^2-8.1=-6\)
* Tại x = \(\dfrac{1}{2}\)
\(2.\left(\dfrac{1}{2}\right)^2-8.\dfrac{1}{2}=-3,5\)
b) \(3x^2+1\)
* Tại x = \(-\dfrac{1}{3}\)
\(3\left(\dfrac{-1}{3}\right)^2+1=\dfrac{4}{3}\)
c) \(2x^2-5x+2\)
* Tại |x| = \(\dfrac{1}{2}\)
-TH1 : x = \(\dfrac{1}{2}\)
\(2.\left(\dfrac{1}{2}\right)^2+5.\dfrac{1}{2}+2=5\)
- TH2 : x= \(\dfrac{-1}{2}\)
\(2\left(\dfrac{-1}{2}\right)^2-5\dfrac{-1}{2}+2=5\)
a) C = 20013 - |5−2x|
do \(-\left|5-2x\right|\le0\forall x\)
=> 20013-\(\left|5-2x\right|\le20013\)
=>A≤20013
=> GTLN C =20013 khi 5-2x=0
=> 2x=5
=> x=\(\dfrac{5}{2}\)
vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)
b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)
do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)
=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)
=> D≤7
=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)
=> x=-\(\dfrac{8}{3}\)
a: \(=x^2-2x-3x^2+5x-4+2x^2-3x+7=3\)
b: \(=2x^3-4x^2+x-1-5+x^2-2x^3+3x^2-x=4\)
c: \(=1-x-\dfrac{3}{5}x^2-x^4+2x+6+0.6x^2+x^4-x=7\)
\(\dfrac{1}{R\left(x\right)}=\dfrac{1}{x\left(x+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)\)
\(\Rightarrow S=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2022}-\dfrac{1}{2024}+\dfrac{1}{2023}-\dfrac{1}{2025}\right)+\dfrac{1}{2.2023}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{2024}-\dfrac{1}{2025}\right)+\dfrac{1}{2.2023}\)
Một kết quả rất xấu
1. \(A=2x^2-5x-5\)
* Tại \(x=-2\) giá trị của biểu thức là :
\(A=2.\left(-2\right)^2-5.\left(-2\right)-5\)
\(A=8-\left(-10\right)-5=13\)
*Tại \(x=\dfrac{1}{2}\)
\(A=2\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}-5\)
\(A=-7\)
Câu 3:
a) \(A=\left(x-3\right)^2+9\ge9,\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)
..........................\(\Leftrightarrow x=3\)
Vậy MIN A = 9 \(\Leftrightarrow x=3\)
P/s: câu b coi lại đề
c) \(\left|x-1\right|+\left(2y-1\right)^4+1\ge1;\forall x,y\)
Dấu "='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy .............................
Câu 5:
Ta có: \(A=\dfrac{x-5}{x-3}=\dfrac{x-3-2}{x-3}=1-\dfrac{2}{x-3}\)
Để A nguyên thì \(2⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do đó:
\(x-3=-2\Rightarrow x=1\)
\(x-3=-1\Rightarrow x=2\)
\(x-3=1\Rightarrow x=4\)
\(x-3=2\Rightarrow x=5\)
Vậy .....................
a) ( x + 5 )3 = -64
x + 5 = - 4
x = - 4 - 5
x = -9
b) (2x - 3)2=9
2x - 3 = 3
2x = 3+3
2x = 6
x = 6 : 2
x = 3
e) \(\dfrac{8}{2x}=4\)
=> 4 . 2x = 8
8x =8
x = 8 : 8
x = 1
g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}:\left(\dfrac{1}{2}\right)^1=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}:\dfrac{1}{2}=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{8}.\dfrac{1}{2}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{16}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\left(\dfrac{1}{2}\right)^{2.2}\)
=> x = 2
h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)
\(\dfrac{1}{4}.x=\dfrac{1}{32}\)
x = \(\dfrac{1}{32}:\dfrac{1}{4}\)
x = \(\dfrac{1}{8}\)
i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)
\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)
\(x=\dfrac{-1}{27}\)
a) (x + 5)3 = -64
=> (x + 5)3 = (-4)3
x + 5 = -4
x = -4 - 5
x = -9
b) (2x - 3)2 = 9
=> (2x - 3)2 = (\(\pm\)3)2
=> 2x - 3 = 3 hoặc 2x - 3 = -3
*2x - 3 = 3
2x = 3 + 3
2x = 9
x = \(\dfrac{9}{2}\)
*2x - 3 = -3
2x = -3 + 3
2x = 0
x = 0 : 2
x = 0
Vậy x \(\in\left\{\dfrac{9}{2};0\right\}\)
c) \(\dfrac{x}{\dfrac{4}{2}}=\dfrac{4}{\dfrac{x}{2}}\)
=> \(x.\dfrac{x}{2}=4.\dfrac{4}{2}\)
\(\dfrac{x}{2}=8\)
x = 8 : 2
x = 4
d) \(\dfrac{-32}{\left(-2\right)^n}=4\)
\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)
=> (-2)n . (-2)2= (-2)5
(-2)n = (-2)5 : (-2)2
(-2)n = (-2)3
Vậy n = 3
e) \(\dfrac{8}{2x}=4\)
=> 2x . 4 = 8
2x = 8 : 4
2x = 2
x = 1
g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^3\)
2x - 1 = 3
2x = 3 + 1
2x = 4
x = 4 : 2
x = 2
h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)
\(x=\left(\dfrac{1}{2}\right)^5:\left(\dfrac{1}{2}\right)^2\)
\(x=\left(\dfrac{1}{2}\right)^3\)
\(x=\dfrac{1}{8}\)
i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)
\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)
\(x=\left(\dfrac{-1}{3}\right)^4:\left(\dfrac{-1}{3}\right)\)
\(x=\left(\dfrac{-1}{3}\right)^3\)
\(x=\dfrac{-1}{27}\).
\(d.Q=\left(\dfrac{1}{2}x-1\right).\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=0\)
\(\Rightarrow\dfrac{1}{2}x-1=0\Rightarrow x=2\)
e. \(-4x+3=0\Rightarrow-4x=-3\Rightarrow x=\dfrac{4}{3}\)
g. \(x^2+4x-3=0\Rightarrow x^2+2.2x+4-7=0\)
\(\Rightarrow\left(x+2\right)^2-7=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=\sqrt{7}\\x+2=-\sqrt{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{7}\\-2-\sqrt{7}\end{matrix}\right.\)
h.
\(x^2+4x+5=0\)
Ta có:
\(x^2+4x+5=x^2+2.x.2+4+1=\left(x+2\right)^2+1>0\)
=> đa thức vô nghiệm
i)\(2x^2-2x+3=0\)
\(\Leftrightarrow\left(\sqrt{2}x\right)^2-2\sqrt{2}\cdot\dfrac{1}{\sqrt{2}}x+\left(\dfrac{1}{\sqrt{2}}\right)^2+\dfrac{5}{2}=0\)
\(\Leftrightarrow\left(\sqrt{2}x-\dfrac{1}{\sqrt{2}}\right)^2+\dfrac{5}{2}=0\)(vô nghiệm)
Ta có: \(\left|2x-1\right|-x=4\)
\(\Rightarrow\left|2x-1\right|=4+x\)
+) TH1: \(2x-1\ge0\Rightarrow2x\ge1\Rightarrow x\ge\dfrac{1}{2}\)
Ta có: \(2x-1=4+x\)
\(\Rightarrow2x-x=1+4\)
\(\Rightarrow x=5\) (t/m)
+) TH2: \(2x-1< 0\Rightarrow2x< 1\Rightarrow x< \dfrac{1}{2}\)
Khi đó \(-2x+1=4+x\)
\(\Rightarrow-2x-x=-1+4\)
\(\Rightarrow-3x=3\)
\(\Rightarrow x=-1\) (t/m)
Vậy \(\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\).