Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
ĐKXĐ: \(\left|x-2\right|-1\ne0\)
\(\Rightarrow\left|x-2\right|\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
Câu 1:
1: \(\left(1+2\dfrac{1}{4}\right):\left[4\cdot\left(-3\right)+\left(-2\right)^3\cdot\dfrac{\left(-3\right)\left(-5\right)}{16}\right]\)
\(=\left(1+2,25\right):\left[-12+\left(-8\right)\cdot\dfrac{15}{16}\right]\)
\(=3,25:\left[-12-\dfrac{15}{2}\right]=3,25:\left(-19.5\right)=-\dfrac{1}{6}\)
2: \(A=\dfrac{-6}{5\cdot11}-\dfrac{5}{3\cdot8}-\dfrac{4}{11\cdot15}+\dfrac{3}{5\cdot8}\)
\(=-\left(\dfrac{6}{5\cdot11}+\dfrac{5}{3\cdot8}+\dfrac{4}{11\cdot15}\right)+\dfrac{3}{5\cdot8}\)
\(=-\left(\dfrac{1}{5}-\dfrac{1}{11}+\dfrac{1}{3}-\dfrac{1}{8}+\dfrac{1}{11}-\dfrac{1}{15}\right)+\dfrac{1}{5}-\dfrac{1}{8}\)
\(=-\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{3}-\dfrac{1}{15}\right)+\dfrac{1}{5}-\dfrac{1}{8}\)
\(=-\dfrac{1}{3}+\dfrac{1}{15}=\dfrac{-4}{15}\)
Câu 2:
1: \(106-\left[\left(5x+3\right)-\left(2x-4\right)-13\right]=\left(-15\right)^{10}:15^{10}\)
=>\(106-\left[5x+3-2x+4-13\right]=1\)
=>3x-6=105
=>3x=111
=>x=37
3: Giá tiền của sản phẩm A là:
\(600000\left(1+20\%\right)=720000\left(đồng\right)\)
Giá tiền của sản phẩm B là:
\(600000\left(1-20\%\right)=600000\cdot0,8=480000\left(đồng\right)\)
Tổng số tiền bán được là 720000+480000=1200000(đồng)
Tổng giá tiền gốc của 2 sản phẩm là:
600000+600000=1200000(đồng)
=>Cửa hàng huề vốn