Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{-2}=\dfrac{1}{2^2}< 1\)
b) \(\left(0,013\right)^{-1}=\dfrac{1}{0,013}>1\)
c) \(\left(\dfrac{2}{7}\right)^5=\dfrac{2^5}{7^5}< 1\)
d) \(\left(\dfrac{1}{2}\right)^{\sqrt{3}}=\dfrac{1}{2^{\sqrt{3}}}< \dfrac{1}{2^{\sqrt{1}}}=\dfrac{1}{2}< 1\)
e) vì \(0< \dfrac{\pi}{4}< 1\)
Suy ra \(\left(\dfrac{\pi}{4}\right)^{\sqrt{5}-2}=\dfrac{\left(\dfrac{\pi}{4}\right)^{\sqrt{5}}}{\left(\dfrac{\pi}{2}\right)^2}>\dfrac{\left(\dfrac{\pi}{4}\right)^{\sqrt{4}}}{\left(\dfrac{\pi}{4}\right)^2}=1\)
f) Vì \(0< \dfrac{1}{3}< 1\)
Nên \(\left(\dfrac{1}{3}\right)^{\sqrt{8}-3}>\left(\dfrac{1}{3}\right)^{\sqrt{9}-3}=\left(\dfrac{1}{3}\right)^0=1\)
a) \(log_3\dfrac{6}{5}>log_3\dfrac{5}{6}\) vì \(\dfrac{6}{5}>\dfrac{5}{6}\)
b) \(log_{\dfrac{1}{3}}9>log_{\dfrac{1}{3}}17\) vì \(9>17\) và \(0< \dfrac{1}{3}< 1\).
c) \(log_{\dfrac{1}{2}}e>log_{\dfrac{1}{2}}\pi\) vì \(e>\pi\) và \(0< \dfrac{1}{2}< 1\)
d) \(log_2\dfrac{\sqrt{5}}{2}>log_2\dfrac{\sqrt{3}}{2}\) vì \(\dfrac{\sqrt{5}}{2}>\dfrac{\sqrt{3}}{2}\).
Em rất muốn biết ... anh học lớp mấy vậy ??? Đây là bài lớp 12 mà
a) Ta thấy: \(\left(4,1\right)^0=1\)
Mà: 0 < 2,7 => \(\left(4,1\right)^{2,7}>1\)
b)Ta thấy: \(\left(0,2\right)^{0,3}< 0,2^0\)
\(\Rightarrow\left(0,2\right)^{0,3}< 1\)
c) Ta thấy: \(\left(0,7\right)^{3,2}< \left(0,7\right)^0\)
\(\Rightarrow\left(0,7\right)^{3,2}< 1\)
d) \(\left(\sqrt{3}\right)^{0,4}>\left(\sqrt{3}\right)^0\)
\(\Rightarrow\left(\sqrt{3}\right)^4>1\)
a) \(\left(\sqrt{17}\right)^6=\sqrt{\left(17^3\right)^2}=17^3=4913\)
\(\left(\sqrt[3]{28}\right)^6=\sqrt[3]{\left(28^2\right)^3}=28^2=784\)
=> \(\left(\sqrt{17}\right)^6>\left(\sqrt[3]{28}\right)^6\)
=> \(\sqrt{17}>\sqrt[3]{28}\)
b) \(\left(\sqrt[4]{13}\right)^{20}=13^5=371293\)
\(\left(\sqrt[5]{23}\right)^{20}=23^4=279841\)
=> \(\sqrt[4]{13}>\sqrt[5]{23}\)
Ta có \(\frac{1}{11};\frac{1}{12};\frac{1}{13};...;\frac{1}{19}>\frac{1}{20}\)
- Suy ra S > \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}+\frac{1}{20}\)( có 10 số hạng)=\(\frac{10}{20}=\frac{1}{2}\)
- Vậy S>\(\frac{1}{2}\)
Ta có S=1/11+1/12+1/13+...+1/20(có 10 phân số)
S>1/20+1/20+1/20+...+1/20(có 10 phân số)
S<10/20=1/2
Nên tổng của S>1/2
3 , 5 0 , 1 > 1