Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2
Do đó VT=VP khi x=2
b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu ĐK của t
\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
a) \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
<=> \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\frac{\sqrt{x-1}}{\sqrt{64}}=-17\)
<=>\(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
<=>\(\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+\frac{6}{2}\right)=-17\)
<=>\(\sqrt{x-1}=-17\)
<=>x-1=17
<=>x=18
Vậy pt có nghiệm là x=18
\(a.ĐK:x-1\ge0\Leftrightarrow x\ge1\)
\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
\(\Leftrightarrow\frac{1}{2}\sqrt{x-1}-\frac{27}{2}\sqrt{x-1}+24\sqrt{\frac{x-1}{64}}=-17\)
\(\Leftrightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{27}{2}+24\sqrt{\frac{1}{64}}\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}.\left(-10\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=\frac{-17}{-10}=\frac{17}{10}\)
\(\Leftrightarrow x-1=\left(\frac{17}{10}\right)^2\)
\(\Leftrightarrow x=\frac{289}{100}+1=3,89\left(TM\right)\)
Vậy \(S=\left\{3,89\right\}\)
\(b.ĐK:x^2+2\ge0\)
\(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
\(\Leftrightarrow9\sqrt{x^2+2}+2\sqrt{x^2+2}-25\sqrt{x^2+2}=-3\)
\(\Leftrightarrow\sqrt{x^2+2}\left(9+2-25\right)=-3\)
\(\Leftrightarrow\sqrt{x^2+2}=\frac{-3}{-14}=\frac{3}{14}\)
\(\Leftrightarrow x^2+2=\left(\frac{3}{14}\right)^2\)
\(\Leftrightarrow x=\sqrt{\frac{9}{196}-2}=\sqrt{-\frac{383}{196}}\left(vl\right)\)
Vậy \(S=\varnothing\)
Mấy câu kia làm tương tự
a) \(\sqrt{5x}=\sqrt{35}\)
ĐK : x ≥ 0
Bình phương hai vế
pt ⇔ 5x = 35 ⇔ x = 7 ( tm )
b) \(\sqrt{36\left(x-5\right)}=18\)
ĐK : x ≥ 5
Bình phương hai vế
pt ⇔ 36( x - 5 ) = 324
⇔ x - 5 = 9
⇔ x = 14 ( tm )
c) \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)
⇔ \(\sqrt{4^2\left(1-2x\right)^2}=20\)
⇔ \(\sqrt{\left(4-8x\right)^2}=20\)
⇔ \(\left|4-8x\right|=20\)
⇔ \(\orbr{\begin{cases}4-8x=20\\4-8x=-20\end{cases}}\)
⇔ \(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
d) \(\sqrt{3-2x}\le\sqrt{5}\)
ĐK : x ≤ 3/2
Bình phương hai vế
bpt ⇔ 3 - 2x ≤ 5
⇔ -2x ≤ 2
⇔ x ≥ -1
Kết hợp với ĐK => Nghiệm của bpt là -1 ≤ x ≤ 3/2
\(a,\sqrt{5x}=\sqrt{35}\left(x\ge0\right)\)
\(\Leftrightarrow5x=35\)
\(\Leftrightarrow x=7\left(tm\right)\)
vậy...
b, \(\sqrt{36\left(x-5\right)}=18\left(x\ge5\right)\)
\(\Leftrightarrow6\sqrt{x-5}=18\)
\(\Leftrightarrow\sqrt{x-5}=3\)
\(\Leftrightarrow x-5=9\)
\(\Leftrightarrow x=14\left(tm\right)\)
vậy...
c, \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)
\(\Leftrightarrow4\sqrt{\left(1-2x\right)^2}=20\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)
\(\Leftrightarrow\left|1-2x\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
vậy....
\(d,\sqrt{3-2x}< 5\left(x< 1.5\right)\)
\(\Leftrightarrow3-2x< 25\)
\(\Leftrightarrow-2x< 22\)
\(\Leftrightarrow x>-11\)
\(\Rightarrow-11< x< 1.5\)
vạy.
\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)
\(\Leftrightarrow\sqrt{x-2}-1+\sqrt{4-x}-1=2x^2-5x-3\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x-2}+1}+\frac{1}{\sqrt{4-x}+1}+2x+1\right)=0\)
\(\Rightarrow x=3\)
phương trình còn lại mk chưa giải đc nhưng nó vô nghiệm
Em thử câu c nha, sai thì thôi
c) ĐK: \(x\ge-1\).Nhận xét x = 0 là không phải nghiệm, xét x khác 0:
Nhân liên hợp ta được \(\left(x+4\right).\left(\frac{x}{\sqrt{x+1}-1}\right)^2=x^2\)
\(\Leftrightarrow\frac{x+4}{\left(\sqrt{x+1}-1\right)^2}=1\Leftrightarrow x+4=\left(\sqrt{x+1}-1\right)^2\)
\(\Leftrightarrow x+4=x+2-2\sqrt{x+1}\) (rút gọn vế phải)
\(\Leftrightarrow\sqrt{x+1}=-1\left(\text{vô lí}\right)\)
Vậy pt vô nghiệm
a/ ĐXĐK: ...
\(\Leftrightarrow9x^2-1-x-8x\sqrt{x+1}=0\)
\(\Leftrightarrow x^2-x-1+8x\left(x-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow x^2-x-1+\frac{8x\left(x^2-x-1\right)}{x+\sqrt{x+1}}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\Rightarrow x=...\\\frac{-8x}{x+\sqrt{x+1}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-8x=x+\sqrt{x+1}\)
\(\Leftrightarrow-9x=\sqrt{x+1}\) (\(x\le0\))
\(\Leftrightarrow81x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1-5\sqrt{13}}{162}\\x=\frac{1+5\sqrt{13}}{162}>0\left(l\right)\end{matrix}\right.\)
d/
\(\Leftrightarrow3x^2+2\left(x^2+x+1\right)-5x\sqrt{x^2+x+1}=0\)
Đặt \(\sqrt{x^2+x+1}=a\)
\(\Leftrightarrow3x^2-5ax+2a^2=0\)
\(\Leftrightarrow\left(x-a\right)\left(3x-2a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=a\\3x=2a\end{matrix}\right.\) (\(x\ge0\))
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=x\\2\sqrt{x^2+x+1}=3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=x^2\\2\left(x^2+x+1\right)=9x^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\7x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1+\sqrt{15}}{7}\)