Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F=|x-1|+|x-2|+|x-3|+...+|x-100|=|x-1|+|2-x|+|x-3|+...+|100-x|
Áp dụng bđt |a|+|b|\(\ge\)|a+b|, ta có:
F=|x-1|+|2-x|+|x-3|+...+|100-x| \(\ge\) |x-1+2-x+x-3+...+100-x| = |50| = 50
=> F\(\ge\)50 => \(Min_F=50\)
P/s: mấy thánh toán đi ngang cho mik hỏi giải vậy có đúng hog?
\(F=\left|x-1\right|+\left|x-2\right|+....+\left|x-99\right|+\left|x-100\right|\)
\(F=\left(\left|x-1\right|+\left|x-100\right|\right)+\left(\left|x-2\right|+\left|x-99\right|\right)+.....+\left(\left|x-50\right|+\left|x-51\right|\right)\)
\(F=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\)
(do \(\left|-A\left(x\right)\right|=\left|A\left(x\right)\right|\))
Với mọi giá trị của \(x\in R\) ta có:
\(\left|x-1\right|\ge1;\left|x-2\right|\ge x-2;.....;\left|99-x\right|\ge99-x;\left|100-x\right|\ge100-x\)
\(\Rightarrow\left|x-1\right|+\left|100-x\right|\ge x-1+100-x\ge99\)
\(\left|x-2\right|+\left|99-x\right|\ge x-2+99-x\ge97\).............
\(\left|x-50\right|+\left|51-x\right|\ge x-50+51-x\ge1\)
\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge99+97+.....+3+1\)
\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge\dfrac{\left(99+1\right).50}{2}\)
\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge2500\)
Dấu "=" sảy ra khi:
\(\left\{{}\begin{matrix}x-50\ge0\\51-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge50\\x\le51\end{matrix}\right.\Rightarrow50\le x\le51\)
Vậy GTNN của biểu thức F là 2500 đạt được khi và chỉ khi \(50\le x\le51\)
Mình cũng không chắc đâu! Chúc bạn học tốt!!!
Trả lời:
a, Vì ^xAm và ^xAB là 2 góc kề bù
=> ^xAm + ^xAB = 180o
=> 75o + ^xAB = 180o
=> ^xAB = 180o - 75o
=> ^xAB = 105o
Ta có: ^xAB = ^yBA = 105o
Mà 2 góc này ở vị trí so le trong
nên Ax // By (đpcm)
b, Ta có: ^yBC + ^yBA + ^ABC = 360o
=> ^yBC + 105o + 90o = 360o
=> ^yBC = 360o - 105o - 90o
=> ^yBC = 165o
Ta có: ^yBC = ^BCz = 165o
Mà 2 góc này ở vị trí so se trong
nên By // Cz (đpcm)
c, Ta có: Ax // By và By // Cz
=> Ax // Cz (vì cùng song song với By) (đpcm)
>> Mình không chép lại đề bài nhé ! <<
Cách 1 :
\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)
Cách 2 :
\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)
\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)
\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)
Cách 1 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)
\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)
\(=-\dfrac{5}{2}\)
Cách 2 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)
\(=\left(-2\right)+0+\dfrac{-1}{2}\)
\(=\dfrac{-5}{2}\)
\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{81}\)
<=> \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{9}\\x+\dfrac{1}{2}=-\dfrac{1}{9}\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=-\dfrac{7}{18}\\x=-\dfrac{11}{18}\end{matrix}\right.\)
\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{81}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{9}\\x+\dfrac{1}{2}=-\dfrac{1}{9}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{18}\\x=-\dfrac{11}{18}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{7}{18};x_2=-\dfrac{11}{18}\).