K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2019

1 + x 3 - x = 5 x x + 2 3 - x + 2 x + 2         Đ K X Đ : x ≠ 3   v à   x ≠ - 2 ⇔ x + 2 3 - x x + 2 3 - x + x x + 2 x + 2 3 - x = 5 x x + 2 3 - x + 2 3 - x x + 2 3 - x

⇔ (x + 2)(3 – x) + x(x + 2) = 5x + 2(3 – x)

⇔ 3x – x 2  + 6 – 2x +  x 2  + 2x = 5x + 6 – 2x

⇔  x 2  –  x 2  + 3x – 2x + 2x – 5x + 2x = 6 – 6 ⇔ 0x = 0

Phương trình đã cho có nghiệm đúng với mọi giá trị của x thỏa mãn điều kiện xác định.

Vậy phương trình có nghiệm x ∈ R / x ≠ 3 và x  ≠  -2

24 tháng 3 2020

a) 7x - 35 = 0

<=> 7x = 0 + 35

<=> 7x = 35

<=> x = 5

b) 4x - x - 18 = 0

<=> 3x - 18 = 0

<=> 3x = 0 + 18

<=> 3x = 18

<=> x = 5

c) x - 6 = 8 - x

<=> x - 6 + x = 8

<=> 2x - 6 = 8

<=> 2x = 8 + 6

<=> 2x = 14

<=> x = 7

d) 48 - 5x = 39 - 2x

<=> 48 - 5x + 2x = 39

<=> 48 - 3x = 39

<=> -3x = 39 - 48

<=> -3x = -9

<=> x = 3

19 tháng 5 2021

có bị viết nhầm thì thông cảm nha!

23 tháng 3 2019

a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)

\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)

\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)

\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0

\(x-1=0\)

\(x=1\)

22 tháng 4 2017

\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)

\(\Leftrightarrow5x-10-15x\le9+10x+10\)

\(\Leftrightarrow-20x\le29\)

\(\Leftrightarrow x\ge-1,45\)

Vậy ...........

\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)

\(\Leftrightarrow x+2-3x+9-5x+10=0\)

\(\Leftrightarrow-7x+21=0\)

\(\Leftrightarrow x=3\)

Vậy ..............

23 tháng 4 2017

 \(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)

\(\Leftrightarrow5x-10-15x-9-10x-10\le0\) 

 \(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)

 \(\Leftrightarrow x\ge-\frac{29}{20}\)

a, \(2+\frac{3}{x-5}=1\Leftrightarrow\frac{3}{x-5}=-1\)

\(\Leftrightarrow x-5=\frac{3}{-1}=-3\Leftrightarrow x=2\)

Vậy .............

b, ....................

\(\Leftrightarrow\frac{x-9}{x^2-3^2}-\frac{2}{x+3}=\frac{1}{x-3}\)

\(\Leftrightarrow\frac{x-9}{\left(x-3\right)\left(x+3\right)}-\frac{2x-6}{\left(x-3\right)\left(x+3\right)}-\frac{x+3}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x-9-2x+6-x+3}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{-2x}{\left(x-3\right)\left(x+3\right)}=0\Rightarrow-2x=0\Rightarrow x=0\)

Vậy .............

17 tháng 2 2019

\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)

\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)

Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)

3 tháng 6 2017
  1. Điều kiện \(\hept{\begin{cases}x\ne5\\x\ne-5\end{cases}}\)\(\Leftrightarrow\frac{x+5}{x\left(x-5\right)}-\frac{\left(x-5\right)}{2x\left(x+5\right)}=\frac{x+25}{2\left(x+5\right)\left(x-5\right)}\)\(\Leftrightarrow\frac{2\left(x+5\right)^2-\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\frac{x\left(x+25\right)}{2x\left(x+5\right)\left(x-5\right)}\)\(\Leftrightarrow x^2+30x+25=x^2+25\Leftrightarrow x=0\)
  2. Điều Kiện : \(x\ne1\)\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)\(\Leftrightarrow x^2+x+1-3x=2x^2-2x\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)so sánh điều kiện có nghiệm phương trình là : \(x=-1\)
3 tháng 6 2017

\(\frac{x+5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x+5\right)}=\frac{x+25}{2\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow\)tu giai ra de ma

20 tháng 1 2019

\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)

Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)

\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)

\(\Leftrightarrow4x-2-6x-3=4\)

\(\Leftrightarrow-2x=9\)

\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)

Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)

\(b,ĐKXĐ:x\ne\pm1;-3\)

Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)

\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)

\(\Leftrightarrow9x^2+14x+13=0\)

\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)

\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)

Pt vô nghiệm 

\(c,ĐKXĐ:x\ne1\)

Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\pm1\)

Kết hợp vs ĐKXĐ được x = -1

Vậy pt có nghiệm duy nhất x = -1

20 tháng 1 2019

làm lần lượt nha(bài nào k bt bỏ qua)

\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)

\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)

\(\Rightarrow-2x-5=4\)

\(\Rightarrow-2x=9\)

\(\Rightarrow x=\frac{9}{-2}\)

18 tháng 1 2017

Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m

18 tháng 1 2017

Bài 2:

a) \(x+x^2=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)

b) \(0x-3=0\)

\(\Leftrightarrow0x=3\)

\(\Rightarrow vonghiem\)

c) \(3y=0\)

\(\Leftrightarrow y=0\)

20 tháng 9 2018

bạn làm đk câu này chưa ạ