Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-3}=\dfrac{y}{-4}=\dfrac{z+1}{5}=\dfrac{x-y+z+1}{-3+4+5}=\dfrac{8}{6}=\dfrac{4}{3}\)
Do đó: x=-4; y=-16/3; z=17/3
\(A=4x^2y^2+5xyz-1=4\cdot16\cdot\dfrac{256}{9}+5\cdot\left(-4\right)\cdot\dfrac{-16}{3}\cdot\dfrac{17}{3}-1\)
=21815/9
(-10/3)5.(-6/5)4
= -10/3 . (-10/3)4 . (-6/5)4
= -10/3 . (-10/3.(-6/5)4
= -10/3. 44
= -10/3. 256
= -2560/3
\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(\Rightarrow\frac{1}{3,5}< \frac{1}{n}< \frac{1}{1,75}\)
\(\Rightarrow3,5>n>1,75\)
\(\Rightarrow\)n \(\in\){ 2 ; 3 }
\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(\Rightarrow n=2\)
Ta có \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
Khi đó \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)
\(>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)
=> M > 1 (1)
Lại có \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Khi đó \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)
\(< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=2\)
=> M > 2(2)
Từ (1) và (2) => 1 < M < 2
=> M không là số tự nhiên
trtrfdretrrfgt.........................................................
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
\(\frac{x}{-10}=-\frac{10}{x}\Rightarrow x\cdot x=\left(-10\right)\cdot\left(-10\right)\)
\(\Rightarrow x^2=100=10^2=\left(-10\right)^2\)
\(\Rightarrow x=10\left(x>0\right)\)
\(\frac{x}{-10}=\frac{-10}{x}\)
\(\Rightarrow x^2=100\)
Mà x > 0 nên suy ra x = 10
Vậy x = 10