Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(d,x-5\sqrt{x}=0\)
\(ĐKXĐ:x\ge0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}\)(Thỏa mãn ĐKXĐ)
Vậy...
\(f\left(x\right)=4x^2+3x+1\)
\(g\left(x\right)=3x^2-2x+1.\)
a) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Rightarrow h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x+1\right)\)
\(\Rightarrow h\left(x\right)=4x^2+3x+1-3x^2+2x-1\)
\(\Rightarrow h\left(x\right)=\left(4x^2-3x^2\right)+\left(3x+2x\right)+\left(1-1\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x.\)
b) Ta có \(h\left(x\right)=x^2+5x.\)
Đặt \(x^2+5x=0\)
\(\Rightarrow x.\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x=0\) và \(x=-5\) là các nghiệm của đa thức \(h\left(x\right).\)
Chúc bạn học tốt!
a) \(L=\left(x-1\right)^2+\left(x+5\right)^2\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+5\right)^2\ge0\end{cases}}\)
\(\Rightarrow L=0\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(x+5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\x=-5\end{cases}}\left(L\right)\)
Vậy đa thức L vô nghiệm
d) \(M=x^2-5x-6\)
\(\Leftrightarrow M=x^2-6x+x-6\)
\(\Leftrightarrow M=x\left(x-6\right)+\left(x-6\right)\)
\(\Leftrightarrow M=\left(x+1\right)\left(x-6\right)\)
M = 0 \(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\)
Vậy đa thức M có hai nghiệm là -1 hoặc 6
*Bài làm:
a, Ta có: \(y=f\left(x\right)=|x|\)
⇒ \(\left\{{}\begin{matrix}f\left(4\right)=y=|4|=4\\f\left(5\frac{1}{6}\right)=y=|5\frac{1}{6}|=5\frac{1}{6}=\frac{31}{6}\\f\left(-9,4\right)=y=|-9,4|=9,4\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}5.f\left(4\right)=5y=5.4=20\\6.f\left(5\frac{1}{6}\right)=6y=6.\frac{31}{6}=31\\8.f\left(-9,4\right)=8y=8.9,4=\text{75.2}\end{matrix}\right.\)
⇒ \(5f\left(4\right)+6f\left(5\frac{1}{6}\right)-8f\left(-9,4\right)\) = \(20+31-75.2\) = \(\text{-24.2}\)
~Vậy: \(5f\left(4\right)+6f\left(5\frac{1}{6}\right)-8f\left(-9,4\right)\) = \(\text{-24.2}\) .
b, Ta có: \(y=f\left(x\right)=|x|\)
⇒ \(|y|=|f\left(x\right)|=||x||\)
Mà \(|f\left(x\right)|=0\) (Theo đề cho).
⇒ \(|y|=|f\left(x\right)|=||x||=0\)
⇒ \(y=f\left(x\right)=|x|=0\)
⇒ \(\left|x\right|=0\)
⇒ \(x=0\) .
~Vậy: \(x=0\) thỏa mãn đề .
➤ Chúc bạn học tốt!
Bài 1:
\(A=\left(x^3.x^3.x^2\right).\left(y.y^4\right).\left(\frac{2}{5}.\frac{-5}{4}\right)\)
\(A=x^8.y^5.\left(-\frac{1}{2}\right)\)
\(B=\left(x^5.x.x^2\right).\left(y^4.y^2.y\right).\left(\frac{-3}{4}.\frac{-8}{9}\right)\)
\(B=x^8.y^7.\frac{2}{3}\)
Bài 2:
\(A=\left(15.x^2.y^3-12.x^2.y^3\right)+\left(11x^3.y^2-8.x^3.y^2\right)+\left(7x^2-12x^2\right)\)
\(A=3.x^2.y^3+2.x^3.y^2-5x^2\)
B tương tự nhé, đáp án là (theo mình)
\(B=\frac{5}{2}.x^5.y+\frac{7}{3}.x.y^4-\frac{1}{4}.x^2.y^3\)
f(x)+q(x)=3x\(^2\)+4x\(^6\)-3xyz\(^5\)+9x\(^6\)-5xyz\(^7\)+8x\(^2\)
=-5xyz+13x\(^6\)-3xyz+11x\(^2\)