\(\frac{x+2}{2x-1}+\frac{x}{2x+1}=\frac{4}{\left(2x-1\right)\left(2x+1\right)}\) giải giú...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

ĐKXđ : x\(\ne\) \(+-\frac{1}{2}\)

\(\frac{\left(x+2\right)\left(2x+1\right)+x\left(2x-1\right)+4}{\left(2x+1\right)\left(2x-1\right)}=0\)

=> 2x2 + 5x + 2 + 2x2 - x + 4 = 0 

=> 4x +6 = 0 

=> x=\(\frac{-6}{4}\)

\(\frac{-3}{2}\)

7 tháng 5 2019

\(\frac{x+2}{2x-1}+\frac{x}{2x+1}=\frac{4}{\left(2x-1\right)\left(2x+1\right)}\)ĐKXĐ:....

\(\Leftrightarrow\frac{\left(x+2\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{x\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}=\frac{4}{\left(2x-1\right)\left(2x+1\right)}\)

\(\Rightarrow\left(x+2\right)\left(2x+1\right)+x\left(2x-1\right)=4\)

\(\Leftrightarrow2x^2+5x+2+2x^2-x-4=0\)

\(\Leftrightarrow4x^2+4x-2=0\)

\(\Leftrightarrow\left(2x\right)^2+2\cdot2x\cdot1+1^2-3=0\)

\(\Leftrightarrow\left(2x+1\right)^2=3=\left(\pm\sqrt{3}\right)^2\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{\sqrt{3}-1}{2}\\x=\frac{-\sqrt{3}-1}{2}\end{cases}}\)( thỏa )

Vậy....

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

\(\frac{\left(x+2\right)^2}{8}-2\left(2x+1\right)=25+\frac{\left(x-2\right)^2}{8}\)

\(\Leftrightarrow\frac{\left(x+2\right)^2}{8}-\frac{16\left(2x+1\right)}{8}=\frac{200}{8}+\frac{\left(x-2\right)^2}{8}\)

\(\Leftrightarrow\left(x+2\right)^2-32x-16=200+\left(x-2\right)^2\)

\(\Leftrightarrow x^2+4x+4-32x-16-200=x^2-4x+4\)

\(\Leftrightarrow x^2-28x-212-x^2+4x-4=0\)

\(\Leftrightarrow-24x=216\)

\(\Leftrightarrow x=-9\)

1 tháng 7 2019

TL:

a)

\(\frac{\left(x+2\right)^2}{8}-\frac{16\left(2x+1\right)}{8}=\frac{200+\left(x-2\right)^2}{8}\) 

\(\frac{x^2+4x+4-32x-16}{8}=\frac{200+x^2-4x+4}{8}\) 

\(x^2-28x-12-200-x^2+4x-4=0\) 

\(-24x-216=0\) 

\(-24x=216\) 

\(x=-9\) 

Vậy x=-9

20 tháng 1 2019

a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)

<=> \(6x^2-5x+3-2x+9x-6x^2=0\)

<=> \(2x+3=0\)

<=> \(x=\frac{-3}{2}\)

b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)

<=> \(10x-40-6-4x=20x+4-4x\)

<=> \(6x-46-16x-4=0\)

<=> \(-10x-50=0\)

<=> \(-10\left(x+5\right)=0\)

<=> \(x+5=0\)

<=> \(x=-5\)

c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)

<=> \(8x+9x-15=36x-18-14\)

<=> \(8x+9x-36x=+15-18-14\)

<=> \(-19x=-14\)

<=> \(x=\frac{14}{19}\)

d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)

<=> \(12x+10-10x-3=8x+4x+2\)

<=> \(2x-7=12x+2\)

<=> \(2x-12x=7+2\)

<=> \(-10x=9\)

<=> \(x=\frac{-9}{10}\)

e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)

<=> \(x^2-6x-12-\left(x-4^2\right)=0\)

<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)

<=> \(x^2-6x-12-x^2+8x-16=0\)

<=> \(2x-28=0\)

<=> \(2\left(x-14\right)=0\)

<=> x-14=0

<=> x=14

20 tháng 1 2019

Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19

26 tháng 2 2022

hic, mk chx học

27 tháng 3 2020

a) \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{8}+\frac{2x-1}{12}\)

<=> \(\frac{x}{4}+\frac{5}{4}-\frac{2x}{3}+1=\frac{6x}{8}-\frac{1}{8}+\frac{2x}{12}-\frac{1}{12}\)

<=> \(-\frac{4}{3}x=-\frac{59}{24}\)

<=> \(x=\frac{59}{32}\)

Vậy S = { 59/32}

b) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)

<=> \(\frac{x^2+14x+40}{12}-\frac{-x^2-2x+8}{4}=\frac{x^2+8x-20}{3}\)

<=> \(\left(\frac{x^2}{12}+\frac{x^2}{4}-\frac{x^2}{3}\right)+\left(\frac{14}{12}x+\frac{2}{4}x-\frac{8}{3}x\right)=-\frac{20}{8}+\frac{8}{4}-\frac{40}{12}\)

<=> \(-x=-8\)

<=> x = 8 

Vậy S = { 8 }

17 tháng 7 2019

\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\) \(\left(x\ne0,2\right)\)

\(\Leftrightarrow\frac{x\left(x+2\right)-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Rightarrow x^2+2x-x+2-2=0\)

\(\Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=-1\left(t/m\right)\end{matrix}\right.\)

\(\frac{2x}{2x-1}+\frac{x}{2x+1}=1+\frac{4}{\left(2x-1\right)\left(2x+1\right)}\left(x\ne\overset{+}{-}\frac{1}{2}\right)\)

\(\Leftrightarrow\frac{2x\left(2x+1\right)+x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\frac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)

\(\Rightarrow4x^2+2x+2x^2-x-4x^2-3=0\)

\(\Leftrightarrow2x^2+x-3=0\)

\(\Leftrightarrow2x^2+3x-2x-3=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=1\end{matrix}\right.\)

\(\frac{2x-1}{3}+x=\frac{x+4}{2}\)

\(\Leftrightarrow\frac{2x-1+3x}{3}=\frac{x+4}{2}\)

\(\Leftrightarrow2\left(5x-1\right)-3\left(x+4\right)=0\)

\(\Leftrightarrow10x-2-3x-12=0\)

\(\Leftrightarrow7x-14=0\Leftrightarrow x=2\)

17 tháng 7 2019

\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

\(\Rightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{1\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Rightarrow x\left(x+2\right)-1\left(x-2\right)=2\)

\(\Rightarrow x^2+2x-x+2=2\)

\(\Rightarrow x^2+x=2-2\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

tương tự

\(\)

11 tháng 2 2017

Cái này là phương trình chứa ẩn ở mẫu đó nha, mình cần sớm

16 tháng 8 2019

\(a.\Leftrightarrow x^2+x-6+2x^2+4x+2=x^2-6x+9-2x^2+4x\)

\(\Leftrightarrow4x^2+7x-13=0\)(pt vô nghiệm)

\(b.\Leftrightarrow x^3+3x^2+3x+1-x^2+2x+8=x^3-8+2x^2\)

\(\Leftrightarrow5x=-17\Rightarrow x=\frac{-17}{5}\)

Đặt \(t=x^2+2x+2\left(t\ge1\right)\)

\(c.\Leftrightarrow\frac{t-1}{t}+\frac{t}{t+1}=\frac{7}{6}\)\(\Leftrightarrow\frac{t^2-1+t^2}{t^2+t}=\frac{7}{6}\)\(\Leftrightarrow12t^2-6=7t^2+7t\)

\(\Leftrightarrow5t^2-7t-6=0\Rightarrow\orbr{\begin{cases}t=2\left(tm\right)\\t=\frac{-3}{5}\left(l\right)\end{cases}}\)

\(\Rightarrow x^2+2x+2=2\Rightarrow x=-2\)