Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)=\frac{2}{3}\)
⇒\(\frac{2}{3}:\left(x-1\right)=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)
⇒\(x-1=\frac{2}{3}:\frac{1}{6}=\frac{2}{3}\cdot6=4\)
hay x=5
Vậy: x=5
b) \(5,4-3\left[x-120\%\right]=\frac{3}{10}\)
⇔\(\frac{27}{5}-3\cdot\left(x-\frac{6}{5}\right)=\frac{3}{10}\)
⇔\(3\left(x-\frac{6}{5}\right)=\frac{27}{5}-\frac{3}{10}=\frac{51}{10}\)
hay \(x-\frac{6}{5}=\frac{51}{10}\cdot\frac{1}{3}=\frac{17}{10}\)
⇔\(x=\frac{17}{10}+\frac{6}{5}=\frac{29}{10}\)
Vậy: \(x=\frac{29}{10}\)
c) \(10\cdot3^{x+2}-3^x=89\)
\(\Leftrightarrow10\cdot3^2\cdot3^x-3^x=89\)
\(\Leftrightarrow3^x\left(90-1\right)=89\)
\(\Leftrightarrow3^x=1\)
hay x=0
Vậy: x=0
d) \(5\cdot\left(x-0,2\right)=3x+\left(\frac{-2}{3}\right)^3\)
⇒\(5\cdot\left(x-\frac{1}{5}\right)=3x+\frac{-8}{27}\)
\(\Leftrightarrow5x-1-3x-\frac{-8}{27}=0\)
\(\Leftrightarrow2x-\frac{19}{27}=0\)
\(\Leftrightarrow2x=\frac{19}{27}\)
hay \(x=\frac{\frac{19}{27}}{2}=\frac{19}{27}\cdot\frac{1}{2}=\frac{19}{54}\)
Vậy: \(x=\frac{19}{54}\)
e) \(\left(2x+\frac{3}{4}\right)^2-1,5=2\frac{1}{2}\)
\(\Leftrightarrow\left(2x+\frac{3}{4}\right)^2=\frac{5}{2}+\frac{3}{2}=\frac{8}{2}=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{3}{2}=-2\\2x+\frac{3}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2-\frac{3}{2}\\2x=2-\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{7}{2}\\2x=\frac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{2}\cdot\frac{1}{2}\\x=\frac{1}{2}\cdot\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{7}{4};\frac{1}{4}\right\}\)
a)|x+0,573|=2
=>x+0,573=2 hoặc -2
Xét x+0,573=2
=>x=1,427
Xét x+0,573=-2
=>x=-2,573
a) | x + 0,573 | = 2
\(\Rightarrow\)x + 0,573 = 2 hoặc x + 0,573 = -2
+) x + 0,573 = 2\(\Rightarrow\)x = 1,427
+) x + 0,573 = -2\(\Rightarrow\)x = -2,573
Vậy x = 1,427 hoặc -2,573
b) \(\left|x+\frac{1}{3}\right|-4=-1\)
\(\Rightarrow\left|x+\frac{1}{3}\right|=3\)
\(\Rightarrow x+\frac{1}{3}=3\) hoặc \(x+\frac{1}{3}=-3\)
+) \(x+\frac{1}{3}=3\Rightarrow x=\frac{8}{3}\)
+) \(x+\frac{1}{3}=-3\Rightarrow x=\frac{-10}{3}\)
Vậy \(x=\frac{8}{3}\) hoặc \(x=\frac{-10}{3}\)
Các phần khác làm tương tự nhé bạn
a) \(\frac{3}{4}+\frac{1}{4}.x=\frac{1}{2}+\frac{1}{2}x\)
\(\Rightarrow3.\frac{1}{4}+\frac{1}{4}.x=\frac{1}{2}.\left(x+1\right)\)
\(\Rightarrow\frac{1}{4}.\left(x+3\right)=\frac{1}{2}.\left(x+1\right)\)
\(\Rightarrow\frac{x+1}{x+3}=\frac{1}{4}:\frac{1}{2}=\frac{1}{2}\)\(\Rightarrow\left(x+1\right).2=x+3\Rightarrow2x+2=x+3\)
\(\Rightarrow2x-x=3-2\Rightarrow x=1\)
vay x=1
a) Quy đồng lên đi.
b) \(\frac{x+2}{0.5}=\frac{2x+1}{2}\Leftrightarrow\frac{x+2}{\left(\frac{1}{2}\right)}=\frac{2x+1}{2}\)
\(\Leftrightarrow2x+4=\frac{2x+1}{2}\Leftrightarrow4x+8=2x+1\)
\(\Leftrightarrow x=-\frac{7}{2}\)
c) \(\Leftrightarrow\left|x+\frac{1}{5}\right|=6\). VỚi x >= -1/5 thì:
\(x+\frac{1}{5}=6\Leftrightarrow x=\frac{29}{5}\left(TM\right)\)
Với x < -1/5 thì \(-x-\frac{1}{5}=6\Leftrightarrow x=-\frac{31}{5}\left(TM\right)\)
d) TƯơng tự ý a, quy đồng lên thôi (mẫu chung là 24 thì phải)
c) \(\left|x+\frac{1}{5}\right|-4=2\)
=> \(\left|x+\frac{1}{5}\right|=2+4\)
=> \(\left|x+\frac{1}{5}\right|=6\)
=> \(\left\{{}\begin{matrix}x+\frac{1}{5}=6\\x+\frac{1}{5}=-6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=6-\frac{1}{5}\\x=\left(-6\right)-\frac{1}{5}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{29}{5}\\x=-\frac{31}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{29}{5};-\frac{31}{5}\right\}\).
Mình chỉ làm câu c) thôi nhé.
Chúc bạn học tốt!
a, \(\left(2x-1\right)=-8\)
\(2x=-8+1\)
\(2x=-7\)
\(x=-7:2\)
\(x=-3,5\)
a) (2x - 1) = -8
⇒ 2x = -8 + 1
⇒ 2x = -7
b) (3x - 2)\(^2\) = \(\frac{1}{49}\)
Ta có: \(\frac{1}{49}\) = \(\frac{1}{7}\). \(\frac{1}{7}\) hoặc \(\frac{1}{49}\) = \(\frac{-1}{7}\). \(\frac{-1}{7}\)
TH1: 3x - 2 = \(\frac{1}{7}\) TH2: 3x - 2 = \(\frac{-1}{7}\)
⇒ 3x = \(\frac{1}{7}\)+2 ⇒ 3x = \(\frac{-1}{7}\)+2
⇒ 3x = \(\frac{15}{7}\) ⇒ 3x = \(\frac{13}{7}\)
⇒ x = \(\frac{5}{7}\) ⇒ x = \(\frac{13}{21}\)
Vậy: x = \(\frac{5}{7}\) hoặc x = \(\frac{13}{21}\)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{18}\)
⇒ x + 1 = 18
⇒ x = 17
Vậy x = 17
b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
⇒ \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)
⇒ \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(1-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=1-\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=\frac{1}{148}\)
⇒ x + 3 = 148
⇒ x = 145
Vậy x = 145
\(\frac{\left(x+1\right)}{1,5}=\frac{3}{2\left(x+1\right)}\)
\(\Leftrightarrow\left(x+1\right).2\left(x+1\right)=1,5.3\)
\(\Leftrightarrow\left(x+1\right).2x+2=\frac{9}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=\frac{9}{2}\\2x+2=\frac{9}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\2x=\frac{5}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{5}{4}\end{cases}}}\)
\(\frac{x+1}{1,5}=\frac{3}{2\left(x+1\right)}\)
\(\Rightarrow2\left(x+1\right)^2=4,5\)
\(\Rightarrow\left(x+1\right)^2=\frac{9}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+1=\sqrt{\frac{9}{4}}\\x+1=-\sqrt{\frac{9}{4}}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}\)