\(\frac{4x}{5}=\frac{3y}{2};\frac{4y}{5}=\frac{5z}{3}và2x-3y+4z=5.34\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2015

\(\frac{x}{\frac{25}{16}}=\frac{y}{\frac{5}{6}}=\frac{z}{\frac{2}{5}}=\frac{2x-3y+4z}{\frac{2.25}{16}-\frac{3.5}{6}+\frac{4.2}{5}}=\frac{5,34}{\frac{89}{40}}=240\)

\(x=\frac{25}{16}.\frac{12}{5}=\frac{15}{4}\)

\(y=\frac{5}{6}.\frac{12}{5}=2\)

\(z=\frac{2}{5}.\frac{12}{5}=\frac{24}{25}\)

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

23 tháng 12 2015

\(\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4x\right)}{9}=\frac{2\left(4y-3z\right)}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)

\(\Leftrightarrow3x-2y=0\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)

\(\Leftrightarrow2z-4x=0\Leftrightarrow\frac{x}{2}=\frac{z}{4}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2x+4y+5z}{4+12+20}=\frac{8}{36}=\frac{2}{9}=\frac{2x+3y-z}{4+12-4}\)=> A= 2x+3y -z = 12.2/9  =8/3

9 tháng 7 2015

nhiều quá không ai làm đâu

17 tháng 8 2016

\(\Rightarrow\frac{5x}{5.10}=\frac{y}{6}=\frac{2z}{2.21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

\(\Rightarrow\frac{5x}{50}+\frac{y}{6}-\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\Rightarrow x=2.10=20\)

\(y=2.6=12\)

\(z=2.21=41\)

8 tháng 11 2018

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)

\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\left(2\right)\)

từ (1) và (2) => \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)

đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\Rightarrow x=15k,y=20k,z=24k\)

thay x=15k, y=20k, z=24k vào M ta có:

\(M=\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\frac{30k+60k+96k}{45k+80k+120k}=\frac{186k}{245k}=\frac{186}{245}\)

vậy M=\(\frac{186}{245}\)

30 tháng 1 2017

Ta có:\(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\\\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\end{cases}}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{4z}{96}=\frac{2x+3y+4z}{30+60+96}=\frac{2x+3y+4z}{186}\)(theo tính chất dãy tỉ số bằng nhau).(1)

\(\frac{3x}{45}=\frac{4y}{80}=\frac{5z}{120}=\frac{3x+4y+5z}{45+80+120}=\frac{3x+4y+5z}{245}\)(theo tính chất dãy tỉ số bằng nhau). (2)

Từ (1) và (2) \(\Rightarrow\frac{2x+3y+4z}{186}=\frac{3x+4y+5z}{245}\Rightarrow\frac{2x+3y+4z}{3x+4y+5z}=\frac{186}{245}\)

25 tháng 1 2017

\(\frac{x}{3}\) = \(\frac{y}{4}\) => \(\frac{x}{15}\) = \(\frac{y}{20}\)

\(\frac{y}{5}\) = \(\frac{z}{6}\) => \(\frac{y}{20}\) = \(\frac{z}{24}\)

nên \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{24}\)

Đặt \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{24}\) = k

=> x = 15k; y = 20k và z = 24k

Thay vào M ta đc:

M = \(\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}\)

= \(\frac{30k+60k+96k}{45k+80k+120k}\)

= \(\frac{\left(30+60+96\right)k}{\left(45+80+120\right)k}\)

= \(\frac{186k}{245k}\) = \(\frac{186}{245}\)

Vậy M = \(\frac{186}{245}\).

24 tháng 7 2016

\(\frac{x}{10}=\frac{y}{5}\Rightarrow\frac{x}{10.2}=\frac{y}{5.2}\Rightarrow\frac{x}{20}=\frac{y}{10}\left(1\right)\)

\(\frac{y}{2}=\frac{z}{5}\Rightarrow\frac{y}{2.5}=\frac{z}{5.5}\Rightarrow\frac{y}{10}=\frac{z}{25}\left(2\right)\)

Từ 1 và 2

\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{20}=\frac{y}{10}=\frac{z}{25}\Rightarrow\frac{2x}{40}=\frac{3y}{30}=\frac{4z}{100}=\frac{2x-3y+4z}{40-30+100}=\frac{330}{110}=3\)

Do đó

\(\frac{x}{20}=3\Rightarrow x=60\)

\(\frac{y}{10}=3\Rightarrow y=30\)

\(\frac{z}{25}=3\Rightarrow z=75\)

\(\frac{x}{10}=\frac{y}{5};\frac{y}{2}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{25}\)

\(\Rightarrow\frac{2x}{40}=\frac{3y}{30}=\frac{4z}{100}\)

Áp dụng t/c dãy tỉ số = nha ta có ::

 \(\frac{2x}{40}=\frac{3y}{30}=\frac{4z}{100}=\frac{2x-3y+4z}{40-30+100}=\frac{330}{110}=3\)

\(\Rightarrow\frac{2x}{40}=3\Rightarrow x=60\)

\(\Rightarrow\frac{3y}{30}=3\Rightarrow y=30\)

\(\Rightarrow\frac{4z}{100}=3\Rightarrow z=75\)