Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{94.97}+\frac{3}{97.100}\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{100}\)
\(\Rightarrow A=\frac{24}{100}=\frac{6}{25}\)
làm :
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{3}{8}\)
b, \(ab\cdot10-ab=2ab\)
\(ab\cdot10-ab\cdot1=2ab\)
\(ab\cdot\left(10-1\right)=2ab\)
\(ab\cdot9=2ab\)
\(ab\cdot9=200+ab\cdot1\)
\(ab\cdot9-ab\cdot1=200\)
\(ab\cdot\left(9-1\right)=200\)
\(ab\cdot8=200\)
\(ab=200:8\)
\(ab=25\)
\(A=\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
\(A=\frac{1.2.\left(1+2^2+3^2+4^2+5^2\right)}{3.4.\left(1+2^2+3^2+4^2+5^2\right)}\)
\(A=\frac{1.2}{3.4}\)
\(A=\frac{1}{6}\)
Ta thấy : \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)
Vậy B > A
Theo đề bài, ta có:
\(A=\frac{1\times2+2\times4+3\times6+4\times8+5\times10}{3\times4+6\times8+9\times12+12\times16+15\times20}\)
\(A=\frac{1\times2\times\left(1+2^2+3^2+4^2+5^2\right)}{3\times4\times\left(1+2^2+3^2+4^2+5^2\right)}\)
\(A=\frac{1\times2}{3\times4}\)
\(A=\frac{1}{6}\)
Ta thấy rằng: \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)
Vậy \(B>A\)
\(\frac{1}{1.3.7}+\frac{1}{3.7.9}+\frac{1}{7.9.13}+\frac{1}{9.13.15}+\frac{1}{13.15.19}\)
\(=\frac{1}{2}\left(\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+...+\frac{1}{13.15}-\frac{1}{15.19}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.3}-\frac{1}{15.19}\right)=\frac{47}{285}\)
\(\frac{1}{1.3.7}=\frac{1}{6}\left(\frac{1}{1.3}-\frac{1}{3.7}\right)\)
\(\frac{1}{3.7.9}=\frac{1}{6}\left(\frac{1}{3.7}-\frac{1}{7.9}\right)\)
....
\(\frac{1}{13.15.19}=\frac{1}{6}\left(\frac{1}{13.15}-\frac{1}{15.19}\right)\)
Cộng các vế với nhau ta được
\(\frac{1}{1.3.7}+\frac{1}{3.7.9}+...+\frac{1}{13.15.19}=\frac{1}{6}\left(\frac{1}{1.3}-\frac{1}{15.19}\right)=\frac{37}{3.15.19}\)
y = \(2\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{31.31}\right)\)
3/2y =\(\frac{3}{2}.2\left(\frac{1}{1.4}+\frac{1}{4.7}+..+\frac{1}{31.34}\right)\)
\(\frac{3}{2}y=3\left(\frac{1}{1.4}+\frac{1}{4.7}+..+\frac{1}{31.34}\right)\)
\(\frac{3}{2}y=\frac{3}{1.4}+\frac{3}{4.7}+..+\frac{3}{31.34}=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+..+\frac{1}{31}-\frac{1}{34}\)]
3/2y = 1 - 1/34
3/2y = 33/34
y = 33/34 : 3/2
y =
Đúng cho mình nha
bai nay de thui
nhung bay gio mk ban
luc nao ranh mk lam
cho nha
minhpham@gmail.com
\(\frac{15}{16}\)nha bạn
úm ba la xin tích
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)
\(=1\left(\frac{1}{1}-\frac{1}{16}\right)\)
\(=1.\frac{15}{16}=\frac{15}{16}\)