\(\frac{16^{15}\cdot9^{10}}{3^{34}\cdot2^{13}}\)   

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

\(\frac{16^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2^4\right)^{15}.\left(3^2\right)^{10}}{3^{24}.2^{13}}=\frac{2^{60}.3^{20}}{3^{24}.2^{13}}=\frac{2^{47}}{3^4}\)

19 tháng 12 2016

6^15*9^10/3^34*2^13

=2^15*3^15*3^20/3^34*2^13

Rút gọn phân số trên, ta được

2^2*3/1=12

Vậy phép tính trên bằng 12

19 tháng 12 2016

Phân số trên bằng 12

27 tháng 12 2016

a) \(\left|\frac{-15}{6}\right|-\left|\frac{3}{18}\right|.\sqrt{81}+\sqrt{\frac{9}{64}}\)

\(=\frac{15}{6}-\frac{1}{6}.9+\frac{3}{8}\)

\(=\frac{15}{6}-\frac{9}{6}+\frac{3}{8}\)

\(=1+\frac{3}{8}\)

\(=\frac{11}{8}\)

b) \(\frac{6^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2.3\right)^{15}.\left(3^2\right)^{10}}{3^{34}.2^{13}}=\frac{2^{15}.3^{15}.3^{20}}{3^{34}.2^{13}}=2^2.3=12\)

27 tháng 12 2016

a/ \(\left|\frac{-15}{6}\right|-\left|\frac{3}{18}\right|.\sqrt{81}+\sqrt{\frac{9}{64}}\)

= \(\frac{15}{6}-\frac{3}{18}.9+\frac{8}{8}\)

= \(\frac{15}{6}-\frac{3}{2}+\frac{3}{8}\)

= \(\frac{60-36+9}{24}=\frac{33}{24}=\frac{11}{8}\)

b/ \(\frac{6^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2.3\right)^{15}.\left(3^2\right)^{10}}{3^{34}.2^{13}}\) \(=\frac{2^{15}.3^{15}.3^{20}}{3^{34}.2^{13}}=\frac{2^2.3^{35}}{3^{34}}=\frac{4.3}{1}=12\)

13 tháng 11 2015

bài này không khó. Nhưng đánh máy để giải cho bạn thì thực sự khó

18 tháng 7 2019

\(\frac{3^{17}\cdot81^{11}}{27^{10}\cdot9^{15}}\)

\(=\frac{3^{17}\cdot\left(3^4\right)^{11}}{\left(3^3\right)^{10}\cdot\left(3^2\right)^{15}}\)

\(=\frac{3^{17}\cdot3^{44}}{3^{30}\cdot3^{30}}\)

\(=\frac{3^{61}}{3^{60}}\)

\(=3\)

18 tháng 7 2019

\(\frac{9^2\cdot2^{11}}{16^2\cdot6^3}\)

\(=\frac{\left(3^2\right)^2\cdot2^{11}}{\left(2^4\right)^2\cdot\left(2\cdot3\right)^3}\)

\(=\frac{3^4\cdot2^{11}}{2^8\cdot2^3\cdot3^3}\)

\(=\frac{3^4\cdot2^{11}}{2^{11}\cdot3^3}\)

\(=\frac{3^4}{3^3}\)

\(=3\)

23 tháng 9 2020

\(A=\frac{6^{10}-3^9.2^8.5}{27^3.4^5+16^3.9^4}\)

\(=\frac{3^{10}.2^{10}-3^9.2^8.5}{\left(3^3\right)^3.\left(2^2\right)^5+\left(2^4\right)^3.\left(3^2\right)^4}\)

\(=\frac{3^{10}.2^{10}-3^9.2^8.5}{3^9.2^{10}+2^{12}.3^8}\)

\(=\frac{3^9.2^8.\left(3.2^2-1.1.5\right)}{3^8.2^{10}.\left(3.1+2^2\right)}\)

\(=\frac{3^9.2^8.7}{3^8.2^{10}.7}\)

\(=\frac{3}{2^2}=\frac{3}{4}\)

Bài làm :

\(A=\frac{6^{10}-3^9.2^8.5}{27^3.4^5+16^3.9^4}\)

\(=\frac{\left(2.3\right)^{10}-3^9.2^8.5}{\left(3^3\right)^3.\left(2^2\right)^5+\left(2^4\right)^3.\left(3^2\right)^4}\)

\(=\frac{2^{10}.3^{10}-3^9.2^8.5}{3^9.2^{10}+2^{12}.3^8}\)

\(=\frac{2^8.3^9.\left(2^2.3-5\right)}{3^8.2^{10}.\left(3+2^2\right)}\)

\(=\frac{3.7}{2^2.7}\)

\(=\frac{3}{4}\)

Học tốt

1 tháng 9 2019

a, Tự chép đề bài ((:

\(=\frac{1}{9}\cdot1+\left(-\frac{1}{243}\right)\cdot\frac{9}{2}\)

\(=\frac{1}{9}-\frac{1}{54}\)

\(=\frac{5}{54}\)

b, 1. \(\left(\frac{2^2\cdot2^3}{4^2\cdot16}\right)^{15}\)

\(=\left(\frac{2^5}{2^4\cdot2^4}\right)^5=\left(\frac{2^5}{2^8}\right)^5=\left(\frac{1}{2^3}\right)^5=\left(\frac{1}{8}\right)^5=\frac{1}{8^5}\)(Để vậy đi :v)

     2. \(\left(\frac{2^6}{16^2}\right)^{10}\)

\(=\left(\frac{2^6}{2^8}\right)^{10}=\left(\frac{1}{2^2}\right)^{10}=\frac{1}{2^{20}}\)

c, \(\frac{2^{15}\cdot9^4}{6^6\cdot8^3}\)

\(=\frac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\frac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\frac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=\frac{3^2}{1}=3^2=9\)

12 tháng 12 2018

Có P =\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\dfrac{2^{19}.\left(3^3\right)^3+5.3.\left(3^2\right)^4}{\left(2.3\right)^9+\left(3.2^2\right)^{10}}\)=\(\dfrac{2^{19}.3^9+5.3.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.\left(2^2\right)^{10}}=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.2^{20}}=\dfrac{2^{18}.3^9.\left(2+5\right)}{3^9.2^{19}.\left(1+3.2\right)}=\dfrac{2^{18}.3^9.7}{3^9.2^{19}.7}\)

=\(\dfrac{1}{2}\)

25 tháng 2 2018

\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)

\(=\frac{2^{19}.\left(3^3\right)^3+15.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)

\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)

\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^{19}.3^9+2^{20}.3^{10}}\)

\(=\frac{2^{18}.3^8\left(2.3+15\right)}{2^{19}.3^9\left(1+2.3\right)}\)

\(=\frac{6+15}{2.3\left(1+6\right)}\)

\(=\frac{21}{6.7}\)

\(=\frac{21}{42}\)

\(=\frac{1}{2}\)