Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(k\left(x\right)=\dfrac{5x^2-22x+25}{x^2-4x+4}\)
\(\Leftrightarrow k\left(x\right)=\dfrac{5x^2-20x+20-x+2-x+2+1}{x^2-4x+4}\)
\(\Leftrightarrow k\left(x\right)=\dfrac{\left(5x^2-20x+20\right)-\left(x-2\right)-\left(x-2\right)+1}{x^2-4x+4}\)
\(\Leftrightarrow k\left(x\right)=\dfrac{5\left(x^2-4x+4\right)-\left(x-2\right)-\left(x-2\right)+1}{x^2-4x+4}\)
\(\Leftrightarrow k\left(x\right)=\dfrac{5\left(x-2\right)^2-\left(x-2\right)-\left(x-2\right)+1}{\left(x-2\right)^2}\)
\(\Leftrightarrow k\left(x\right)=\dfrac{5\left(x-2\right)^2}{\left(x-2\right)^2}-\dfrac{x-2}{\left(x-2\right)^2}-\dfrac{x-2}{\left(x-2\right)^2}+\dfrac{1}{\left(x-2\right)^2}\)
\(\Leftrightarrow k\left(x\right)=5-\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{\left(x-2\right)^2}\)
Đặt \(y=\dfrac{1}{x-2}\)
\(\Rightarrow k\left(x\right)=5-y-y+y^2=y^2-2y+1+4=\left(y-1\right)^2+4\ge4\)
Vậy GTNN của \(k\left(x\right)=4\) khi \(y=1\Rightarrow\dfrac{1}{x-2}=1\Leftrightarrow x=3\)
\(h\left(x\right)=\dfrac{x^2-x+1}{\left(x-1\right)^2}\)
\(\Leftrightarrow h\left(x\right)=\dfrac{x^2-2x+1+x-1+1}{\left(x-1\right)^2}\)
\(\Leftrightarrow h\left(x\right)=\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2}+\dfrac{x-1}{\left(x-1\right)^2}+\dfrac{1}{\left(x-1\right)^2}\)
\(\Leftrightarrow h\left(x\right)=1+\dfrac{1}{x-1}+\dfrac{1}{\left(x-1\right)^2}\)
Đặt \(y=\dfrac{1}{x-1}\)
\(\Rightarrow h\left(x\right)=1+y+y^2\)
\(\Rightarrow h\left(x\right)=y^2+y+1\)
\(\Rightarrow h\left(x\right)=y^2+2.y.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(\Rightarrow h\left(x\right)=\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=> GTNN của \(h\left(x\right)=\dfrac{3}{4}\) khi \(y+\dfrac{1}{2}=0\Leftrightarrow y=\dfrac{-1}{2}\)
\(\Leftrightarrow\dfrac{1}{x-1}=\dfrac{-1}{2}\)
\(\Leftrightarrow x=-1\)
a) \(7x^2-28=0\Leftrightarrow7\left(x^2-4\right)=0\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) vậy \(x=2;x=-2\)
b) \(\left(2x+1\right)+x\left(2x+1\right)=0\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{-1}{2}\end{matrix}\right.\) vậy \(x=-1;x=\dfrac{-1}{2}\)
c) \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-5=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\) vậy \(x=0;x=5;x=-5\)
d) \(9\left(3x-2\right)=x\left(2-3x\right)\Leftrightarrow9\left(3x-2\right)=-x\left(3x-2\right)\)
\(\Leftrightarrow9\left(3x-2\right)+x\left(3x-2\right)=0\Leftrightarrow\left(9+x\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}9+x=0\\3x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\3x=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x=-9;x=\dfrac{2}{3}\)
e) \(5x\left(x-3\right)-2x+6=0\Leftrightarrow5x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(5x-2\right)\left(x-3\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}5x-2=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\x=3\end{matrix}\right.\) vậy \(x=\dfrac{2}{5};x=3\)
\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)
\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)
kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)
b. \(\)-\(3x-4\)
a).
\(x^5+x+1=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^3-x^2\right)\)
b).\(x^8+x^7+1=\left(x^8+x^7+x^6\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
d).
\(x^7+x^5+1=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
e).
\(x^8+x^4+1=x^8+2x^4+1-x^4\\ =\left(x^4+1\right)^2-\left(x^2\right)^2\\ =\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\\ =\left(x^4-x^2+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Bài 2:
Cách 1:
\(x^3-7x-6=x^3-3x^2+3x^2-9x+2x-6\)
\(=\left(x^3-3x^2\right)+\left(3x^2-9x\right)+\left(2x-6\right)\)
\(=x^2.\left(x-3\right)+3x.\left(x-3\right)+2.\left(x-3\right)\)
\(=\left(x-3\right).\left(x^2+3x+2\right)\)
\(=\left(x-3\right).\left(x^2+x+2x+2\right)\)
\(=\left(x-3\right).\left[\left(x^2+x\right)+\left(2x+2\right)\right]\)
\(=\left(x-3\right).\left[x.\left(x+1\right)+2.\left(x+1\right)\right]\)
\(=\left(x-3\right).\left(x+1\right).\left(x+2\right)\)
Cách 2:
\(x^3-7x-6=x^3+x^2-x^2-x-6x-6\)
\(=\left(x^3+x^2\right)-\left(x^2+x\right)-\left(6x+6\right)\)
\(=x^2.\left(x+1\right)-x.\left(x+1\right)-6.\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2-x-6\right)\)
\(=\left(x+1\right).\left(x^2+2x-3x-6\right)\)
\(=\left(x+1\right).\left[\left(x^2+2x\right)-\left(3x+6\right)\right]\)
\(=\left(x+1\right).\left[x.\left(x+2\right)-3.\left(x+2\right)\right]\)
\(=\left(x+1\right).\left(x+2\right).\left(x-3\right)\)
Chúc bạn học tốt!!! Còn 1 cách nữa nhưng mình mỏi tay quá!!!
a, \(x^3-9x^2+6x+16=x^3+x^2-10x^2-10x+16x+16\)
\(=\left(x^3+x^2\right)-\left(10x^2+10x\right)+\left(16x+16\right)\)
\(=x^2.\left(x+1\right)-10x.\left(x+1\right)+16.\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2-10x+16\right)\)
\(=\left(x+1\right).\left(x^2-2x-8x+16\right)\)
\(=\left(x+1\right).\left[\left(x^2-2x\right)-\left(8x-16\right)\right]\)
\(=\left(x+1\right).\left[x.\left(x-2\right)-8.\left(x-2\right)\right]\)
\(=\left(x+1\right).\left(x-2\right).\left(x-8\right)\)
Chúc bạn học tốt!!!
a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y
=>x2+2y2+ 1 ≥ 1
=>Phân thức trên luôn có nghĩa
\(\sqrt{6}+\sqrt{6}+\sqrt{6}+...+\sqrt{6}=n\sqrt{6}\)(n là số số hạng của tổng các căn)
\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)
\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)
\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)
\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)