Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân cả 2 vế với x, ta có: \(\frac{x^2}{3}=-\frac{x.y}{7}\)thay x.y=-189, ta có: \(\frac{x^2}{3}=\frac{189}{7}\)=> \(x^2\).7=189.3 => x^2 = 81 => x=9 ( vì x>y nên x=9) => y=-21 => x+y=-12
chết nhầm cho sửa lại
Đặt \(\frac{x}{3}=-\frac{y}{7}=k\)
\(\Rightarrow\frac{x}{3}=3k;-\frac{y}{7}=-7k\)
Theo đề bài ra , ta có :
\(3k.-7k=-189\)
\(\Leftrightarrow-21k^2=-189\)
\(\Leftrightarrow k^2=9\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}k=3\\k=-3\end{array}\right.\)
Khi \(k=3\) , thì :
\(\left[\begin{array}{nghiempt}x=6\\y=-21\end{array}\right.\)
Khi \(k=-3\) , thì :
\(\left[\begin{array}{nghiempt}x=-6\\y=21\end{array}\right.\)
Vậy ................
Đặt \(\frac{x}{3}=-\frac{y}{7}=k\)
\(\Rightarrow\frac{x}{3}=3k;-\frac{y}{7}=-7k\)
Theo đề bài ta có :
\(3k.-7k=-189\)
\(\Leftrightarrow-21k^2=-189\)
\(\Leftrightarrow k^2=9\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}k=9\\k=-9\end{array}\right.\)
Khi \(k=9\) , thì :
\(\left[\begin{array}{nghiempt}x=27\\y=-63\end{array}\right.\)
Khi \(k=-9\) , thì :
\(\left[\begin{array}{nghiempt}x=-27\\x=63\end{array}\right.\)
Vậy .................
\(\frac{x}{3}=\frac{y}{5}\)
=> \(\frac{x^4}{3^4}=\frac{y^4}{5^4}=\frac{x^2.y^2}{3^2.5^2}=\frac{225}{225}=1\)
=> x4 = 34 => x = 3 hoặc x = -3
y4 = 54 => x = 5 hoặc x = -5
KL: (x; y) = (3; 5) ; (-3; -5)
Đặt:
\(\frac{x}{3}=\frac{y}{5}=k\)
Ta có:
\(\frac{x}{3}=k\Rightarrow x=k.3\)
\(\frac{y}{5}=k\Rightarrow y=k.5\)
Thế vào \(x^2y^2=225\), ta có:
\(\left(k.3\right)^2.\left(k.5\right)^2=225\)
\(\Rightarrow\left(k^2.15\right)^2=225\)
\(\Rightarrow\left(k^2.15\right)=15\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=1\)hoặc \(-1\)
x ; y tự tìm bạn.
=> x = -3
y = -5
Đặt:
\(\frac{x}{3}=\frac{y}{2}=k\)
\(\Rightarrow x=k.3\)
\(\Rightarrow y=k.2\)
Thế vào \(6xy=1\), ta có:
\(6.\left(k.3\right).\left(k.2\right)=1\)
\(6.k^2.6=1\)
\(6.k^2=\frac{1}{6}\)
\(k^2=\frac{1}{36}\)
\(\Rightarrow k=\frac{1}{6}\) hoặc \(-\frac{1}{6}\)
Rồi giờ tìm x ; y bạn từ làm nhá
\(\frac{x}{3}=\frac{y}{2}\)
=> \(\frac{x^2}{3^2}=\frac{y^2}{2^2}=\frac{xy}{3.2}\)
=> \(\frac{x^2}{9}=\frac{y^2}{4}=\frac{6xy}{36}=\frac{1}{36}\)
=> x2 = 1.9 : 36 = \(\frac{1}{4}\) => \(x=\frac{1}{2}\) hoặc \(x=-\frac{1}{2}\)
Ta có:
\(\frac{x}{3}=\frac{-y}{7}\Rightarrow x=\frac{-3y}{7}\)
Thay vào: x . y, ta được:
\(x\cdot y=\frac{-3y}{7}\cdot y=\frac{-3y^2}{7}=-189\)
=> -3y2 = -189 * 7 = -1323
=> y2 = -1323 : (-3) = 441
=> y = 21 hoặc y = -21
x . y = -189
=> x = -189 : 21 = -9 hoặc x = -189 : (-21) = 9
mà x > y
Vậy x = 9; y = -21