Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/
a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(A=x^2-2xy+y^2+x^2+2xy+y^2\)
\(A=2x^2+2y^2\)
b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(B=8ab\)
c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(C=x^2+2xy+y^2-x^2+2xy-y^2\)
\(C=4xy\)
d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(D=4x^2-4x+1-8x^2+24x-18+4\)
\(D=-4x^2+20x-13\)
a) \(A=\left(\frac{1}{4}x-y\right)\left(x^2+4xy+16y^2\right)+4\left(4y^3-\frac{1}{16}x^3+1\right)\)
\(\Leftrightarrow A=\frac{1}{4}\left(x-4y\right)\left(x^2+4xy+16y^2\right)+16y^3-\frac{1}{4}x^3+4\)
\(\Leftrightarrow A=\frac{1}{4}\left(x^3-64y^3\right)+16y^3-\frac{1}{4}x^3+4\)
\(\Leftrightarrow A=\frac{1}{4}x^3-16y^3+16y^3-\frac{1}{4}x^3+4\)
\(\Leftrightarrow A=4\)
b) \(B=2x\left(x-4\right)^2-\left(x+5\right)\left(x-2\right)\left(x+2\right)+2\left(x-5\right)^2-\left(x-1\right)^2\)
\(\Leftrightarrow B=2x\left(x^2-8x+16\right)-\left(x+5\right)\left(x^2-4\right)+2\left(x^2-10x+25\right)-\left(x^2-2x+1\right)\)
\(\Leftrightarrow B=2x^3-16x^2+32x-x^3-5x^2+4x+20+2x^2-20x+50-x^2+2x-1\)
\(\Leftrightarrow B=x^3-20x^2+18x+69\)
c) \(C=\frac{80x^3-125x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)
\(\Leftrightarrow C=\frac{5x\left(16x^2-25\right)}{\left(x-3\right)\left(3-8+4x\right)}\)
\(\Leftrightarrow C=\frac{5x\left(4x-5\right)\left(4x+5\right)}{\left(x-3\right)\left(4x-5\right)}\)
\(\Leftrightarrow C=\frac{5x\left(4x+5\right)}{x-3}\)
\(\Leftrightarrow C=\frac{20x^2+25x}{x-3}\)
d) \(D=\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}\)
\(\Leftrightarrow D=\frac{\left(a-b\right)\left(c-d\right)}{\left(a^2-b^2\right)\left(c^2-d^2\right)}\)
\(\Leftrightarrow D=\frac{\left(a-b\right)\left(c-d\right)}{\left(a-b\right)\left(a+b\right)\left(c-d\right)\left(c+d\right)}\)
\(\Leftrightarrow D=\frac{1}{\left(a+b\right)\left(c+d\right)}\)
Chúc bạn học tốt !
a) \(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b)\(x^2-2xy+y^2-z^2\)
\(=\left(x^2-2xy+y^2\right)-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
c)\(5x-5y+ax-ay\)
\(=5\left(x-y\right)+a\left(x-y\right)\)
\(=\left(5+a\right)\left(x-y\right)\)
d)\(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a^2-y\right)\left(a-x\right)\)
Bài 2 :
a) \(x^2-2xy-47^2+y^2\)
\(=x^2-2xy+y^2-47^2\)
\(=\left(x-y\right)^2-47^2\)
\(=\left(x-y-47\right)\left(x-y+47\right)\)
Bài 1
a) x2 - xy + x - y
= x.(x - y) + (x - y)
= (x - y) . (x + 1)
b) x2 - 2xy + y2 - z2
= (x - y)2 - z2
= (x - y - z) . (x - y + z)
c) 5x - 5y + ax - ay
= 5 . (x - y) + a . (x - y)
= (5 + a ) . (x - y)
d) a3 - a2x - ay + xy
=
a3−a2x−ay+xya3−a2x−ay+xy
=(a3−a2x)−(ay−xy)=(a3−a2x)−(ay−xy)
=a2(a−x)−y(a−x)=a2(a−x)−y(a−x)
=(a2−y)(a−x)
\(a,\left(x+2\right)^2=x^2+4x+4\)
\(b,\left(x-1\right)^2=x^2-2x+1\)
\(c,\left(x^2+y^2\right)^2=x^4+2x^2y^2+y^4\)
\(d,\left(x^3+2y^2\right)^2=x^6+4x^3y^2+4y^4\)
\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây
1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất.
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận
a) ( 3 - x )( x2 + 2x - 7 ) + ( x - 3 )( x2 + x - 5 )
= ( 3 - x )( x2 + 2x - 7 ) - ( 3 - x )( x2 + x - 5 )
= ( 3 - x )( x2 + 2x - 7 - x2 - x + 5 )
= ( 3 - x )( x - 2 )
b) ( x - 5 )2 + 3( 5 - x )
= ( x - 5 )2 - 3( x - 5 )
= ( x - 5 )( x - 5 - 3 ) = ( x - 5 )( x - 8 )
c) 2x( x - 1 )2 - ( 1 - x )3
= 2x( 1 - x )2 - ( 1 - x )3
= ( 1 - x )2( 2x - 1 + x ) = ( 1 - x )2( 3x - 1 )
d) x2 + 8x + 16 = ( x + 4 )2
e) x2 - 4xy + 4y2 = ( x - 2y )2
g) 4x2 - 25y2 = ( 2x )2 - ( 5y )2 = ( 2x - 5y )( 2x + 5y )
h) 25( x + 1 )2 - 4( x - 3 )2
= 52( x + 1 )2 - 22( x - 3 )2
= ( 5x + 5 )2 - ( 2x - 6 )2
= ( 5x + 5 - 2x + 6 )( 5x + 5 + 2x - 6 )
= ( 3x + 11 )( 7x - 1 )
i) x3 + 27 = ( x + 3 )( x2 - 3x + 9 )
k) 8x3 - 125 = ( 2x )3 - 53 = ( 2x - 5 )( 4x2 + 10x + 25 )
l) x3 + 6x2 + 12x + 8 = ( x + 2 )3
m) -x3 + 9x2 - 27x + 27 = -( x3 - 9x2 + 27x - 27 ) = -( x - 3 )3
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(A=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left(\frac{2}{x^2-4}-\frac{x+2}{x^2-4}\right)\)
\(A=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{x^2-4}\)
\(A=\frac{2x}{\left(x+2\right)^2}.\frac{x^2-4}{-x}=\frac{2\left(x-2\right)}{-\left(x+2\right)}=\frac{-2\left(x-2\right)}{x+2}\)
Đặt t = x 2 – 4x ta được
t 2 + 8 t + 15 = t 2 + 3 t + 5 t + 15 = t(t + 3) + 5(t + 3) = (t + 5)(t + 3)
= ( x 2 – 4 x + 5 ) ( x 2 – 4 x + 3 ) = ( x 2 – 4 x + 5 ) ( x 2 – 3 x – x + 3 ) = ( x 2 – 4 x + 5 ) ( x ( x – 3 ) – ( x – 3 ) ) = ( x 2 – 4 x + 5 ) ( x – 1 ) ( x – 3 )
Vậy số cần điền là -3
Đáp số cần chọn là: A