Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F
a) Sử dụng hệ thức lượng trong các tam giác vuông ABH; ACH và ABC
\(AB.BE=BH^2;AC.CF=CH^2\)
\(AB^2=BH.BC;AC^2=CH.BC\)
=> \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)
<=> \(\frac{AB^4}{AC^4}=\frac{BE.AB}{CF.AC}=\frac{BH^2}{CH^2}\)
<=> \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)
<=> \(\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)
<=> \(\frac{BH}{CH}=\frac{BH}{CH}\) đúng
Vậy ta có điều phải chứng minh là đúng
b)
Ta có: \(AH^2=BH.CH\)
=> \(AH^4=BH^2.CH^2=BE.AB.CF.AC=BE.CF.AB.AC=BE.CF.AH.BC\)
=> \(AH^3=BC.BE.CF\)
c)
Xét tam giác vuông BEH và tam giác vuông HFC
có: ^EBH =^FHC ( cùng phụ góc FCH)
=> Tam giác BEH đồng dạng tam giác HFC
=> \(\frac{BE}{HF}=\frac{EH}{FC}\Rightarrow BE.FC=EH.FH\)
=> \(AH^3=BC.HE.HF\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :
\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)
Dấu = khi a=b=1/2
Sorry mik chỉ làm được câu a thôi mong bn thôn g cảm
tu giác AEHF là hình chữ nhật
CF=AC-AF
BE=AB-AE
binh phuong công lai
AC^2+AB^2-2AE.AB-2AC.AF+AE^2+Af^2
AC^2+AB^2=BC^2
ae^2+af^2=ef^2=ah^2
AE.AB=AH^2
AF.AC=AH^2
thay vào VP=3AH^2+BC^2-2AH^2-2AH^2+AH^2=BC^2=VT
Vẽ hình
A F H
Câu hỏi của Lưu Như Ý - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo!
NA/BA = NC/BC
Vì Tam giác ABC vuông tại A, biết AB=3cm,BC=5cm => AC= 4(cm)
=> NC-NA=4 (cm)
=> NC/BC = NA/BA = ( NC-NA)/(BC-AB) = 2
=> NA= BA*2 =6 (cm)
Câu 4:
A B C E F H O I P K Q x
a) Vì BE,CF là các đường cao của \(\Delta\)ABC nên ^BEC = ^CFB = 900
=> ^BEC và ^CFB cùng nhìn đoạn BC dưới một góc 900
=> Bốn điểm B,C,E,F cùng thuộc đường tròn đường kính BC (Theo quỹ tích cung chứa góc) (đpcm).
b) Gọi Ax là tia tiếp tuyến tại A của đường tròn (O), khi đó OA vuông góc Ax
Từ câu a ta thấy tứ giác BFEC nội tiếp đường tròn (BC) => ^AFE = ^ACB
Mà ^ACB = ^BAx (Tính chất góc tạo bởi tiếp tuyến và dây) nên ^AFE = ^BAx
=> EF // Ax (2 góc so le trong bằng nhau)
Do OA vuông góc Ax nên OA vuông góc EF (Quan hệ song song, vuông góc) (đpcm).
c) +) Ta dễ có ^OAC = 900 - ^AOC/2 = 900 - ^ABC = ^BAH => ^OAC + ^OAH = ^BAH + ^OAH => ^BAI = ^EAP
Xét \(\Delta\)APE và \(\Delta\)AIB: ^EAP = ^BAI, ^AEP = ^ABI (Tứ giác BFEC nội tiếp) => \(\Delta\)APE ~ \(\Delta\)AIB (g.g) (đpcm).
+) Gọi AO cắt đường tròn (O) lần thứ hai tại Q. Khi đó AQ là đường kính của (O)
Nên ta có: ^ABQ = ^ACQ = 900 hay BQ vuông góc AB, CQ vuông góc AC. Mà CH vuông góc AB, BH vuông góc AC
Nên BQ // CH, BH // CQ (Quan hệ song song vuông góc) => Tứ giác BHCQ là hình bình hành
Từ đó HQ đi qua trung điểm K của BC hay H,K,Q thẳng hàng (1)
Cũng dễ thấy ^QBC = ^HCB (Vì BQ // CH) = ^FEH (Vì B,C,E,F cùng thuộc một đường tròn)
Hay ^QBI = ^HEP. Kết hợp với ^BQI = ^BQA = ^ACB = ^AHE (Cùng phụ ^CAH) = ^EHP
Suy ra \(\Delta\)BIQ ~ \(\Delta\)EPH (g.g) => \(\frac{HP}{QI}=\frac{EP}{BI}\). Lại có \(\frac{EP}{BI}=\frac{AP}{AI}\)nên \(\frac{HP}{QI}=\frac{AP}{AI}\)
Áp dụng ĐL Thales đảo vào \(\Delta\)AQH ta có IP // HQ (2)
Từ (1) và (2) ta thu được KH // IP (đpcm).
Nếu ko nhìn rõ thì bn có thể tham khảo tại:
https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html
https://vnexpress.net/giao-duc/so-giao-duc-va-dao-tao-ha-noi-cong-bo-dap-an-thi-vao-lop-10-3934904.html
https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html
https://tin.tuyensinh247.com/dap-an-de-thi-vao-lop-10-mon-toan-ha-noi-nam-2019-c29a45461.html
a) \(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2.\left|a-3\right|=2\left(a-3\right)=2a-6\) (Vì \(a\ge3\) )
b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=3\sqrt{\left(b-2\right)^2}=3\left|b-2\right|=3\left(2-b\right)\)
\(=6-3b\) (vì b < 2 )
b) \(\sqrt{27.48\left(1-a\right)^2}=\sqrt{27.3.16.\left(1-a\right)^2}=\sqrt{81.16.\left(1-a\right)^2}\)
\(=\sqrt{9^2.4^2.\left(1-a\right)^2}=9.4\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36\left(1-a\right)=36-36a\) (vì a > 1)
Xét tam giác vuông ABD và ADC, ta có: tan B = A D B D ; tan C = A D C D
Suy ra: tan B . tan C = A D 2 B D . C D (1)
Lại có H B D ^ = C A D ^ (cùng phụ với A C B ^ ) và H D B ^ = A D C ^ = 90 0
Do đó ∆ B D H ~ ∆ A D C (g.g), suy ra D H D C = B D A D , do đó BD.DC = DH.AD (2)
Từ (1) và (2) suy ra tan B . tan C = A D 2 D H . A D = A D D H (3)
Theo giả thiết H D A H = 3 2 suy ra H D A H + H D = 3 2 + 3 hay H D A D = 3 5 , suy ra AD = 5 3 HD
Thay vào (3) ta được: tan B . tan C = 5 3 H D D H = 5 3
Đáp án cần chọn là: D