K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2022

Câu 1:

Gọi E là trung điểm của KC

=>AK=KE=EC

Xét ΔBKC có CM/CB=CE/CK

nên ME//BK

Xét ΔAME có AI/AM=AK/AE

nên IK//ME

=>IK//BK

=>B,I,K thẳng hàng

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0
27 tháng 7 2019
https://i.imgur.com/Ofq4upt.jpg
16 tháng 5 2017

A B C D I M
a)
\(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)=\dfrac{1}{2}\left(\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\right)=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\).
b)
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+x\overrightarrow{BC}\)\(=\overrightarrow{AB}+x\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\left(1-x\right)\overrightarrow{AB}+x\overrightarrow{AC}\).
c) A, M, I thẳng hàng khi và chỉ khi hai véc tơ \(\overrightarrow{AM};\overrightarrow{AI}\) cùng phương
hay \(\dfrac{1-x}{\dfrac{1}{2}}=\dfrac{x}{\dfrac{3}{8}}\Leftrightarrow\dfrac{3}{8}\left(1-x\right)=\dfrac{1}{2}x\)
\(\Leftrightarrow\dfrac{7}{8}x=\dfrac{3}{8}\)\(\Leftrightarrow x=\dfrac{3}{7}\).


NV
13 tháng 10 2020

\(\overrightarrow{BM}=\overrightarrow{BC}-2\overrightarrow{AB}\Leftrightarrow\overrightarrow{BI}+\overrightarrow{IM}=\overrightarrow{BC}-2\left(\overrightarrow{AC}+\overrightarrow{CB}\right)\)

\(\Leftrightarrow\frac{1}{2}\overrightarrow{BC}+\overrightarrow{IM}=\overrightarrow{BC}-2\overrightarrow{AC}+2\overrightarrow{BC}\Rightarrow\overrightarrow{IM}=\frac{5}{2}\overrightarrow{BC}-2\overrightarrow{AC}\)

\(\overrightarrow{CI}+\overrightarrow{IN}=x\overrightarrow{AC}-\overrightarrow{BC}\Rightarrow-\frac{1}{2}\overrightarrow{BC}+\overrightarrow{IN}=x\overrightarrow{AC}-\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{IN}=-\frac{1}{2}\overrightarrow{BC}+x\overrightarrow{AC}=-\frac{1}{5}\left(\frac{5}{2}\overrightarrow{BC}-5x.\overrightarrow{AC}\right)\)

Để MN qua I hay I;M;N thẳng hàng \(\Leftrightarrow5x=2\Rightarrow x=\frac{2}{5}\)