Cho tam giác ABC có G là trọng tâm. Chứng minh \(\overrightarrow {AB}  + \overright...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Với điểm M bất kì ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \)

Chọn M trùng A, ta được: \(\overrightarrow {AA}  + \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG}  \Leftrightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG} .\)

2 tháng 12 2019

toán lớp mấy đó bạn

2 tháng 12 2019

Mình giải được rồi nheeee

7 tháng 11 2021

c) \(\overrightarrow{BG}+\overrightarrow{GC}=\overrightarrow{BC}\ne\overrightarrow{GA}\)

d) \(\overrightarrow{GB}+\overrightarrow{GC}=\dfrac{1}{2}\overrightarrow{GM}\ne\overrightarrow{GM}\)

 

15 tháng 5 2017

Ta đã biết nếu G' là trọng tâm tam giác ABC thì:
\(\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\).
Gỉa sử có điểm G thỏa mãn: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta sẽ chứng minh \(G\equiv G'\).
Thật vậy:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}+\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GG'}=\overrightarrow{0}\).
Vậy \(G\equiv G'\).

Bài 3: 

Tham khảo:

image

12 tháng 5 2017

TenAnh1 TenAnh1 A = (-4, -6.26) A = (-4, -6.26) A = (-4, -6.26) B = (11.36, -6.26) B = (11.36, -6.26) B = (11.36, -6.26) C = (-4.1, -6.64) C = (-4.1, -6.64) C = (-4.1, -6.64) D = (11.26, -6.64) D = (11.26, -6.64) D = (11.26, -6.64) E = (-4.34, -6.06) E = (-4.34, -6.06) E = (-4.34, -6.06) F = (11.02, -6.06) F = (11.02, -6.06) F = (11.02, -6.06)
\(BH\perp AC\). (1)
\(\widehat{ADC}=90^o\) (góc nội tiếp chắn nửa đường tròn) vì vậy\(AC\perp DC\). (2)
Từ (1) và (2) suy ra BH//DC. (3)
Tương tự HC//BD (vì cùng vuông góc với AB). (4)
Từ (3);(4) suy ra tứ giác HCDB là hình bình hành.
b) Do O là trung điểm của AD nên \(\overrightarrow{HA}+\overrightarrow{HD}=2\overrightarrow{HO}\).
Do M là trung điểm của BC nên \(\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HM}=\overrightarrow{HD}\).
Vì vậy \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HA}+\overrightarrow{HD}=2\overrightarrow{HO}\).
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OH}+\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}\)
\(=3\overrightarrow{HO}+2\overrightarrow{HO}=2\left(\overrightarrow{HO}+\overrightarrow{OH}\right)+\overrightarrow{HO}\)
\(=2.\overrightarrow{0}+\overrightarrow{HO}=\overrightarrow{HO}\).
c) Ta có:
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)\(=3\overrightarrow{OG}\) (theo tính chất trọng tâm tam giác). (5)
Mặt khác theo câu b)
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\). (6)
Theo (5) và (6) ta có: \(\overrightarrow{OH}=3\overrightarrow{OG}\).
Suy ra ba điểm O, H, G thẳng hàng ( đường thẳng Ơ-le).

30 tháng 3 2017

Giải bài 9 trang 28 sgk Hình học 10 | Để học tốt Toán 10

30 tháng 3 2017

Qua M kẻ các đường thẳng song song với các cạnh của tam giác

A1B1 // AB; A2C2 // AC; B2C1 // BC.

Dễ thấy các tam giác MB1C2; MA1C1;MA2B2 đều là các tam giác đều. Ta lại có MD B1C2 nên MD cũng là trung điểm thuộc cạnh B1C2 của tam giác MB1C2

Ta có 2 = +

Tương tự: 2 = +

2 = +

=> 2( ++) = (+) + ( + ) + (+)

Tứ giác là hình bình hành nên

+ =

Tương tự: + =

+ =

=> 2( ++) = ++

vì O là trọng tâm bất kì của tam giác và M là một điểm bất kì nên

++ = 3.

Cuối cùng ta có:

2( ++) = 3;

=> ++ =