Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O E F K I J H M N S T L
c) AT là đường kính của (O), dễ thấy H,K,T thẳng hàng, gọi TH cắt (O) lần nữa tại S, ta được ^ASH = 900
Ta có A,E,H,F,S cùng thuộc đường tròn đường kính AH, suy ra:
(ES,EF) = (AS,AB) = (SC,SB), (SF,SE) = (BS,BC) do đó \(\Delta\)SFE ~ \(\Delta\)SBC
Vì K,L là trung điểm của BC,EF nên \(\Delta\)SFL ~ \(\Delta\)SBK, suy ra \(\Delta\)SFB ~ \(\Delta\)SLK, (KS,KL) = (BS,BA) (1)
Lại có: \(\frac{MF}{MB}=\frac{HF}{HB}=\frac{HE}{HC}=\frac{NE}{NC}\), \(\Delta\)SEC ~ \(\Delta\)SFB, suy ra \(\Delta\)SMN ~ \(\Delta\)SBC
Tương tự như trên, ta thu được (KS,KI) = (BS,BA) (2)
Từ (1);(2) suy ra K,I,L thẳng hàng. Mặt khác K,L,J thẳng hàng vì chúng cách đều E,F.
Do vậy I,J,K thẳng hàng.
Gọi I là trung điểm của BC => BI=IC=1/2 BC (1)
Vì tam giác FBC vuông tại F; FI là đường trung trực của BC =>FI = 1/2 BC (2)
Tương tự => EI = 1/2 BC (3)
Từ (1), (2) và (3) =>EI = BI = IC = FI = 1/2 BC
=>E, B, C, F thuộc một đường tròn