K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Với mọi x ≠ 0 ta luôn có: - 1 < 0 < 1. Do đó,

Giải bài 2 trang 79 SGK Đại Số 10 | Giải toán lớp 10 hay C < A < B.

Lại có x > 5 ⇒ x2 > 52 (Bình phương hai vế)

⇒ Giải bài 2 trang 79 SGK Đại Số 10 | Giải toán lớp 10 (Nhân cả hai vế của bất đẳng thức với Giải bài 2 trang 79 SGK Đại Số 10 | Giải toán lớp 10 )

Giải bài 2 trang 79 SGK Đại Số 10 | Giải toán lớp 10

Vậy ta có C < A < B và C < A < D nên trong bốn số trên, C là số nhỏ nhất.

18 tháng 2 2020

Cko cái bài xem nào

30 tháng 3 2017

Ta có: A=1>\(\dfrac{5}{x}\)> 0(vì x>5)(1)

B= \(\dfrac{5}{x}\)+1=\(\dfrac{5+x}{x}\)>1(2)

C= \(\dfrac{5}{x}\)-1=\(\dfrac{5-x}{x}\) < 0(3)

D=\(\dfrac{x}{5}\)>1(4)

Từ(1),(2),(3),(4):

Ta thấy đáp án C là đáp án duy nhất bé hơn không nên đáp án C= \(\dfrac{5}{x}\)-1 là đáp án có số nhỏ nhất.

29 tháng 3 2017

đáp án; C

vì x>5 => 5/x < 1 => 5/x -1 <1 (âm)

29 tháng 12 2016

Bài 1a)

Áp dụng bất đẳng thức Cô-si cho từng cặp ta có

\(\left\{\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ac}\end{matrix}\right.\)

\(=>\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)

\(=>\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{\left(abc\right)^2}\)

\(=>\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\) ( điều phải chứng minh )

Bài 1b)

Áp dụng bất đẳng thức Cô-si bộ 3 số cho từng cặp ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\end{matrix}\right.\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\left(abc\right)^2}\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9\sqrt[3]{\left(abc\right)^3}\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\) (điều phải chứng minh )

Bài 1c) Ta có

\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

\(=>1+a+b\left(1+a\right)\left(1+c\right)\ge1^3+3.1^2.\sqrt[3]{abc}+3.1.\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{\left(abc\right)^3}\)

\(=>\left(1+a+b+ab\right)\left(1+c\right)\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>1+a+b+ab+c\left(1+a+b+ab\right)\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>1+a+b+ab+c+ca+bc+abc\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>a+b+c+ab+bc+ca\ge3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}\)

Áp dụng bất đẳng thức Cô-si bộ 3 số cho vế trái ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\ab+bc+ac\ge3\sqrt[3]{\left(abc\right)^2}\end{matrix}\right.\)

\(=>a+b+c+ab+bc+ac\ge3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}\) (điều phải chứng minh )

29 tháng 12 2016

Bài 2a)

Áp dụng bất đẳng thức Cô-si cho từng cặp ta có

\(\left\{\begin{matrix}\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2\sqrt{c^2}=2c\\\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}.\frac{ab}{c}}=2\sqrt{a^2}=2a\\\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2\sqrt{b^2}=2b\end{matrix}\right.\)

\(=>2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(=>\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\) (điều phải chứng minh )

Bài 2b)

Chứng minh BĐT \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Áp dụng BĐT Cô-si cho vế trái ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều phải chứng minh )

Ta có \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(=>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\ge\frac{3}{2}+3\)

\(=>\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\ge\frac{9}{2}\)

\(=>\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)

\(=>\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)

\(=>2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\)

Áp dụng BĐT vừa chứng minh \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(=>\left(b+c+a+c+a+b\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9 \) (Điều phải chứng minh )

 

a: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\left(\dfrac{1}{x_1-2}-\dfrac{1}{x_2-2}\right):\left(x_1-x_2\right)\)

\(=\dfrac{x_2-2-x_1+2}{\left(x_1-2\right)\left(x_2-2\right)}\cdot\dfrac{1}{x_1-x_2}=\dfrac{-1}{\left(x_1-2\right)\left(x_2-2\right)}\)

Trường hợp 1: \(\left\{{}\begin{matrix}x_1< 2\\x_2< 2\end{matrix}\right.\Leftrightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)

=>\(\dfrac{-1}{\left(x_1-2\right)\left(x_2-2\right)}< 0\)

Do đó: F(x) nghịch biến khi \(x\in\left(-\infty;2\right)\)

TRường hợp 2: \(\left\{{}\begin{matrix}x_1>2\\x_2>2\end{matrix}\right.\Leftrightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)

=>\(\dfrac{-1}{\left(x_1-2\right)\left(x_2-2\right)}< 0\)

Do đó: F(x) nghịch biến khi \(x\in\left(2;+\infty\right)\)

b: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2-6x_1+5-x_2^2+6x_2-5}{x_1-x_2}=\left(x_1+x_2\right)-6\)

Trường hợp 1: \(\left\{{}\begin{matrix}x_1< 3\\x_2< 3\end{matrix}\right.\Leftrightarrow x_1+x_2-6< 0\)

=>Hàm số nghịch biến khi x<3

Trường hợp 2: \(\left\{{}\begin{matrix}x_1>3\\x_2>3\end{matrix}\right.\Leftrightarrow x_1+x_2-6>0\)

=>Hàm số đồng biến khi x>3