Cho hình tứ diện đều (H). Gọi (H') là hình tứ diện đều có các đỉnh là tâm các mặ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

Đáp án C.

Đặt (H) là hình tứ diện đều ABCD, cạnh bằng A. Gọi E ; F ; I ; J  lần lượt là tâm của các mặt  A B C ; A B D ; A C D ; B C D   .

Kí hiệu như hình vẽ.

Ta có M E M C = M F M D = 1 3 ⇒ E F C D = 1 3 ⇒ E F = C D 3 = a 3 .

Vậy tứ diện  là tứ diện đều có cạnh bằng a 3 .

Tỉ số thể tích của diện tích toàn phần tứ diện đều  và tứ diện đều ABCD là  a 3 a 2 = 1 9

24 tháng 6 2019

Đáp án C.

Cho hình lập phương ABCD.A'B'C'D'. Gọi E,F,G,I,J,K là tâm các mặt của nó. Khi đó các đỉnh E,F,G,I,J,K tạo thành hình bát diện đều EFGHIJK.

Đặt A B = a  thì E J = A ' B 2 = a 2 2 .

Thể tích của khối bát diện đều có cạnh bằng x được tính bằng công thức V = x 3 2 3 . Áp dụng vào bài toán ta có V E F G Ị K = 1 3 . a 2 2 3 . 2 = a 3 6 .

Vậy tỉ số thể tích cần tìm là a 3 6 a 3 = 1 6 .

26 tháng 1 2019

Đáp án C.

10 tháng 1 2018

30 tháng 9 2018

Đáp án C

Mặt cầu  (S) có tâm I 1 ; 0 ; 2 , bán kính R=3. Nhận xét thấy S, I, S’ thẳng hàng và S S ' ⊥ A B C D . Khi đó S S ' = 2 R = 6 . Ta có:

V H = V S . A B C D + V S ' . A B C D = 1 3 d S ; A B C D . S A B C D + 1 3 d S ' ; A B C D . S A B C D

= 1 3 d S ; A B C D + d S ' ; A B C D . S A B C D = 1 3 S S ' . S A B C D = 2 S A B C D

Từ giả thiết suy ra ABCD là hình vuông, gọi a là cạnh hình vuông đó.

Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng r và ngoại tiếp hình vuông ABCD.

Suy ra 2 r = A C = a 2 ⇒ r = a 2 2 . Từ d I ; P 2 + r 2 = R 2 .

⇔ r = R 2 − d I ; P 2 = 3 2 − 8 3 2 = 17 3 = a 2 2 ⇔ a = 2 17 3 2

Vậy V H = 2 S A B C D = 2 a 2 = 2. 2 17 3 2 2 = 68 9 .

9 tháng 3 2018

Chọn C

22 tháng 3 2022

lên đây mà xem nek: https://qanda.ai/vi/solutions/3j3oUVV6jJ

4 tháng 1 2019