Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có AE/AB=AH/AD=1/2
nên EH//BD và EH/BD=1/2
Xét ΔCBD có CG/CD=CF/CB=1/2
nên GF//BD và GF=1/2BD
=>EH//FG và EH=FG
Xét tứ giác EHGF có
EH//FG
EH=FG
=>EHGF là hình bình hành
b: Xét tứ giác AECG có
AE//CG
AE=CG
=>AECG là hình bình hành
AECG là hình bình hành
=>AC cắt EG tại trung điểm của mỗi đường(1)
EHGF là hình bình hành
=>EG và HF tại trung điểm của mỗi đường(2)
ABCDlà hình bình hành
=>AC và BD tại trung điểm của mỗi đường(3)
Từ (1), (2), (3) suy ra AC,BD,EG,FH đồng quy
a) A B C D E F G H
Ta nối E và G ; H và F lại với nhau tạo thành hai đường chéo của tứ giác HEFG.
Vì ABCD là hình nhữ nhật nên ABCD là hình thang đặc biệt.
Có: EG là đường trung bình của của hình chữ nhật ABCD ( AE=EB; DG=GC )
=> EG//AD (1)
HF là đường trung bình của hình chữ nhật ABCD ( AH=HD; BF=FC )
=> HF//AB (2)
Theo bài ra: AB _|_ AD ( Tứ giác ABCD là hình chữ nhật )
Từ (1) và (2) suy ra: HF_|_ EG
Tứ giác có hai đường chéo vuông góc với nhau là hình thoi nên HEFG là hình thoi.
Bạn có thể chứng minh theo trục đối xứng.
b) A B C D E F G H I
Gọi I là giao điểm của hai AC và BD (1)
Ta có: AC và BD là hai đường chéo của hình chữ nhật ABCD
=> AI = IC và BI = ID
Xét tam giác ABC có: AE=EB và AI = IC
=> EI là đường trung bình của tam giác ABC
=> EG cắt AC tại I (2)
Xét tam giác ABD có AH=HD và DI=IB
=> HI là đường trung bình của tam giác ABD
=> HF cắt BD tại I (3)
Từ (1),(2),(3) suy ra EG cắt HF tại I (4)
Từ (1),(2),(3),(4) suy ra EG,HF,AC,BD đồng quy tại I
Bài 1:
a) Đặt \(6x+7=y\)
\(PT\Leftrightarrow y^2\left(y-1\right)\left(y+1\right)=72\)
\(\Leftrightarrow y^4-y^2-72=0\)
\(\Leftrightarrow\left(y^2-9\right)\left(y^2+8\right)=0\)
Mà \(y^2+8>0\left(\forall y\right)\)
\(\Rightarrow y^2-9=0\Leftrightarrow\left(y-3\right)\left(y+3\right)=0\Leftrightarrow\left(6x+4\right)\left(6x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}6x+4=0\\6x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{cases}}\)
b) đk: \(x\ne\left\{-4;-5;-6;-7\right\}\)
\(PT\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)
Bài 2 không tiện vẽ hình nên thôi nhờ godd khác:)
Bài 3:
Ta có:
\(a_n=1+2+3+...+n\)
\(a_{n+1}=1+2+3+...+n+\left(n+1\right)\)
\(\Rightarrow a_n+a_{n+1}=2\cdot\left(1+2+3+...+n\right)+\left(n+1\right)\)
\(=2\cdot\frac{n\left(n+1\right)}{2}+n+1\)
\(=n^2+n+n+1=\left(n+1\right)^2\)
Là SCP => đpcm
a) Âp dụng tính chất đường trung bình cho DBAC và DADC ta có:
EF//HG; EF = HG = 0.5AC và HE//HG; HE = FG = 0.5BD.
Mà ABCD là hình chữ nhật nên AB = BD Þ EFGH là hình thoi.
b) Gọi O = AC Ç BD Þ O là trung điểm của AC và BD. Chứng minh EBGD và BFDH là hình bình hành suy ra AC, BD,EG, FH đồng quy tại trung điểm mỗi đường (điểm O).