Câu 8. Tìm 2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2021

ngu dmjrhjxfeehchedeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeddddddddjwhdhhdxkjefgjewdyjech\

\

\

27 tháng 6 2023

Gọi H là giao điểm của BM và CN. Ta có:

Diện tích tam giác ABC = 1/2 * AB * AC = 1/2 * 8 cm * 12 cm = 48 cm^2

Theo định lí Menelaus, ta có: 

(BH/HA) * (AN/NC) * (CM/MB) = 1

Thay giá trị vào ta được: 

(BH/HA) * (4/8) * (5/7) = 1

Suy ra: BH/HA = 14/15

Do đó, AH = AB - BH = 8 cm - (14/15)*8 cm = 8/15 cm

Tương tự, ta có: CH = 12/15 cm

Áp dụng công thức diện tích tam giác bằng nửa tích chất của đường cao, ta có:

Diện tích tam giác AMN = 1/2 * AM * NH = 1/2 * (AB - BM) * AH = 1/2 * (8 cm - 5 cm) * 8/15 cm = 8/15 cm^2

Vậy diện tích hình tam giác AMN là 8/15 cm^2.

15 tháng 1 2017

x:y:z=2:3:(-4)

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\)

Theo tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y+z}{2-3+\left(-4\right)}=\frac{-125}{-5}=25\)

=>x=2.25=50, y=3.25=75, z=-4.25=-100

Kết luận.

15 tháng 1 2017

x-12=y-34=z-56

=>x=z-44, y=z-22, thay vào 3x-2y+z=4 ta có:

3(z-44)-2(z-22)+z=4

<=>3z-132-2z+44+z=4

<=>2z=92

<=>z=46

=>x=46-44=2, y=46-22=24

16 tháng 6 2016

\(\frac{2x+7}{4}=\frac{3-5y}{7}=\frac{2x-5y}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x+7}{4}=\frac{3-5y}{7}=\frac{2x-5y}{9}=\frac{\left(2x+7\right)+\left(3-5y\right)-\left(2x-5y\right)}{4+7-9}\)

\(=\frac{2x+7+3-5y-2x+5y}{2}=\frac{10}{2}=5\)

Suy ra:\(\frac{2x+7}{4}=5\Rightarrow2x+7=20\Rightarrow x=\frac{13}{2}\)

\(\frac{3-5y}{7}=5\Rightarrow3-5y=35\Rightarrow x=-\frac{32}{5}\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

a)

ĐK: $x-2\geq 0\Leftrightarrow x\geq 2$

TXĐ: $[2;+\infty)$

b)

ĐK: $4x-3\geq 0\Leftrightarrow x\geq \frac{3}{4}$

TXĐ: $[\frac{3}{4};+\infty)$

c) ĐK: \(x+2>0\Leftrightarrow x>-2\)

TXĐ: $(-2;+\infty)$

d)

ĐK: $3-x>0\Leftrightarrow x< 3$

TXĐ: $(-\infty; 3)$

e)

$4-3x>0\Leftrightarrow x< \frac{4}{3}$

TXĐ: $(-\infty; \frac{4}{3})$

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

f)

ĐK:\(\left\{\begin{matrix} x^2+2\geq 0\\ x\geq 0\end{matrix}\right.\Leftrightarrow x\geq 0\)

TXĐ: $[0;+\infty)$

g) ĐK: \(\left\{\begin{matrix} x^2-2x+1\geq 0\\ 2-3x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)^2\geq 0\\ x\leq\frac{2}{3}\end{matrix}\right.\Leftrightarrow x\leq \frac{2}{3}\)

TXĐ: $(-\infty; \frac{2}{3}]$

h)

ĐK: \(\left\{\begin{matrix} 2+x\geq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x\geq 2\)

TXĐ: $[2;+\infty)$

i)

ĐK: \(\left\{\begin{matrix} 2+x\geq 0\\ 2-x\geq 0\end{matrix}\right.\Leftrightarrow 2\geq x\geq -2\)

TXĐ: $[-2;2]$

25 tháng 4 2017

Ta có \(M\in\Delta_1\Rightarrow M\left(2t+3;t\right)\)

.

Khoảng cách từ M đến đường thẳng \(\Delta_2\)bằng \(\dfrac{1}{\sqrt{2}}\)

\(\Rightarrow\)\(d\left(M,\Delta_2\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\dfrac{\left|2t+3+t+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left|3t+4\right|=1\)\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=\dfrac{-5}{3}\end{matrix}\right.\)

* \(t=-1\)

\(\Rightarrow M\left(1;-1\right)\)

*\(t=\dfrac{-5}{3}\)

\(\Rightarrow M\left(\dfrac{-1}{3};\dfrac{-5}{3}\right)\)

NV
25 tháng 4 2020

Câu 1:

Đường tròn (C) tâm \(I\left(1;2\right)\) bán kính \(R=2\)

\(\overrightarrow{IM}=\left(2;2\right)=2\left(1;1\right)\)

Do AB luôn vuông góc AM nên đường thẳng AB nhận (1;1) là 1 vtpt

Phương trình AB có dạng: \(x+y+c=0\)

Theo công thức diện tích tam giác:

\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}=\frac{1}{2}R^2sin\widehat{AIB}\le\frac{1}{2}R^2\)

\(\Rightarrow S_{max}=\frac{1}{2}R^2\) khi \(\widehat{AIB}=90^0\)

\(\Rightarrow d\left(I;AB\right)=\frac{R}{\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow\frac{\left|1+2+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Leftrightarrow\left|c+3\right|=2\Rightarrow\left[{}\begin{matrix}c=-1\\c=-5\end{matrix}\right.\)

Có 2 đường thẳng AB thỏa mãn: \(\left[{}\begin{matrix}x+y-1=0\\x+y-5=0\end{matrix}\right.\)

TH1: \(x+y-1=0\Rightarrow y=1-x\)

Thay vào pt đường tròn: \(x^2+\left(1-x\right)^2-2x-4\left(1-x\right)+1=0\)

Giải ra tọa độ A hoặc B (1 cái là đủ) rồi tính được AM

TH2: tương tự.

Bạn tự làm nốt phần còn lại nhé

25 tháng 4 2020

Đây là đề bài 1 chính thức nha bạn!

Trong Oxy, cho (C1): \(x^2+y^2-2x-4y+1=0\), M (3; 4)
a) Tìm tọa độ tâm I và tính bán kính R của (C1).
b) Viết phương trình tiếp tuyến d1 với đường tròn (C1) tại giao điểm của\(\Delta_1:x-2y+5=0,\Delta_2:3x+y+1=0\)
c) Viết phương trình tiếp tuyến d2 với đường tròn (C1) biết d2 song song với d: \(4x+3y+2020=0\)
d) Viết phương trình đường tròn (C2) có tâm M, cắt đường tròn (C1) tại hai điểm A, B sao cho \(S_{\Delta IAB}\)lớn nhất.