Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, △ABC△ABC vuông có ˆA=900A^=900 , ˆB=600B^=600 và b = 10 thì độ dài a là :
A. a = 15√3153
B. a = 10√3103
C. a = 20√332033
D. a = 20√3203
2, △ABC△ABC vuông có ˆA=900,ˆC=600A^=900,C^=600 và b = thì độ dài b' là :
A. b' = 8
B. b' = 6
C. b' = 6√363
D. b' = 3√3
\(1a.\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}=\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}=21-2\sqrt{21}+2\sqrt{21}=21\) \(b.\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}=11+2\sqrt{30}-2\sqrt{30}=11\)
\(2a.\sqrt{\dfrac{a}{b}}+\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}=\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{a}{b}.b^2}+\sqrt{\dfrac{a^2}{b^2}.\dfrac{b}{a}}=\sqrt{\dfrac{a}{b}}+b\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{a}{b}}=\left(2+b\right)\sqrt{\dfrac{a}{b}}\) \(b.\sqrt{\dfrac{m}{1-2x+x^2}}.\sqrt{\dfrac{4m-8mx+4mx^2}{81}}=\sqrt{\dfrac{m}{\left(x-1\right)^2}}.\sqrt{\dfrac{\left(2\sqrt{m}x-2\sqrt{m}\right)^2}{81}}=\dfrac{\sqrt{m}}{\text{|}x-1\text{|}}.\dfrac{\text{|}2\sqrt{m}x-2\sqrt{m}\text{|}}{9}=\dfrac{\sqrt{m}}{\text{|}x-1\text{|}}.\dfrac{2\sqrt{m}\text{|}x-1\text{|}}{9}=\dfrac{2m}{9}\) \(3a.VP=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=\left(a+\sqrt{a}+1+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2=\left(\sqrt{a}+1\right)^2.\dfrac{1}{\left(\sqrt{a}+1\right)^2}=1=VT\)
KL : Vậy đẳng thức được chứng minh.
\(b.VP=\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}=\dfrac{a+b}{b^2}.\dfrac{b^2\text{|}a\text{|}}{\text{|}a+b\text{|}}=\dfrac{a+b}{b^2}.\dfrac{b^2\text{|}a\text{|}}{a+b}=\text{|}a\text{|}=VT\)
KL : Vậy đẳng thức được chứng minh .
P/s : Dài v ~
Bài 1 :
a)\(\sqrt{-2\text{x}+3}\) <=> -2x+3 \(\ge\)0 <=> -2x \(\ge\) -3 <=> x\(\le\) \(\frac{3}{2}\)
b)\(\sqrt{\frac{4}{x+3}}< =>x+3>0< =>x>-3\)
Bài 2 :
a)\(\sqrt{\left(4+\sqrt{2}\right)^2}=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)
b)\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}=2\sqrt{3}+\left|2-\sqrt{3}\right|=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)
c) \(\sqrt{\left(3-\sqrt{3}\right)^2}=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)
Bài 3 :
a) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
VT = \(\sqrt{5-2.2.\sqrt{5}+2^2}-\sqrt{5}\)
=\(\sqrt{\left(\sqrt{5}\right)^2-4\sqrt{5}+2^2}-\sqrt{5}\)
=\(\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
=|\(\sqrt{5-2}\)| -\(\sqrt{5}\)
= \(\sqrt{5}-2-\sqrt{5}\)
= -2 = VP
b)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
VT = \(\sqrt{7+2.4.\sqrt{7}+4^2}-\sqrt{7}\)
= \(\sqrt{\left(\sqrt{7}+4\right)^2}-\sqrt{7}\)
= |\(\sqrt{7}+4\)| -\(\sqrt{7}\)
=\(\sqrt{7}+4-\sqrt{7}\)
= 4 =VP
c) \(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
VT = \(16-8\sqrt{7}+7\)
= 23 - \(8\sqrt{7}\) = VP
Bài 4:
a)\(\frac{x^2-5}{x+\sqrt{5}}=\frac{x^2-\left(\sqrt{5}\right)^2}{x+\sqrt{5}}=\frac{\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
Tương tự
Bài 5 :
a) \(\sqrt{x^2+6\text{x}+9}=3\text{x}-1\)
=> \(\sqrt{\left(x+3^2\right)}\) = 3x-1
=> x+3 = 3x-1
+) x+3 =3x-1 => x= 2
+)x+3=-3x-1 => x= \(\frac{-1}{2}\) ( không tmđk)
b)+c) Tương tự
Bài 1:
\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)
\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)
\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)
\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)
\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)
\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)
\(\Rightarrow C=\sqrt{14}\)
\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)
\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)
Bài 2:
a) Bạn xem lại đề.
b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)
c)
\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)
\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)
Bài 3 : Áp dụng BĐT Bu - nhi - a cốp xki ta có :
\(A=\sqrt{x-2}+\sqrt{4-x}\le\sqrt{\left(1^2+1^2\right)\left(x-2+4-x\right)}=\sqrt{2.2}=2\)
Vậy GTLN của A là 2 . Dấu \("="\) xảy ra khi \(x=3\)
\(B=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{\left(1^2+1^2\right)\left(6-x+x+2\right)}=\sqrt{2.8}=4\)
Vậy GTLN của B là 4 . Dấu \("="\) xảy ra khi \(x=2\)
\(C=\sqrt{x}+\sqrt{2-x}\le\sqrt{\left(1^2+1^2\right)\left(x+2-x\right)}=\sqrt{2.2}=2\)
Vậy GTLN của C là 2 . Dấu \("="\) xảy ra khi \(x=1\)
Bài 2:
a .\(\dfrac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\("="\Leftrightarrow a=b\)
b. \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\Leftrightarrow a+b< \left(\sqrt{a}+\sqrt{b}\right)^2\Leftrightarrow a+b< a+b+2\sqrt{ab}\left(a,b>0\right)\)
\(c.a+b+\dfrac{1}{2}\ge\sqrt{a}+\sqrt{b}\) ( t nghĩ là > thôi )
d. \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
\("="\Leftrightarrow a=b=c\)
e. \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
\(\Leftrightarrow\dfrac{a+b}{2}-\dfrac{a+b+2\sqrt{ab}}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a+2b-a-b-2\sqrt{ab}}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\) ( đúng)
\("="\Leftrightarrow a=b\)
Gọi chiều cao của tháp là AB, bóng của tòa tháp trên mặt đất là AC.
Theo đề, ta có: AB\(\perp\)AC tại A, \(\widehat{C}=45^0\); AC=30m
Xét ΔABC vuông tại A có \(tanC=\dfrac{AB}{AC}\)
=>\(\dfrac{AB}{30}=tan45=1\)
=>AB=30(m)
=>Chọn A